
Title: Unifying the E-type and plural dynamic approaches
to improper scope phenomena

Authors: Steven Abney Ezra Keshet
Orcid IDs: 0000-0002-7467-6690 0000-0002-9359-2062

Affiliation: University of Michigan, Ann Arbor, Michigan, U.S.A.

Abstract

There is a variety of constructions in which singular and plural pro-
nouns are not syntactically bound by their antecedents, such as don-
key anaphora (Geach 1962), paycheck pronouns (Karttunen 1969), quan-
tificational subordination (Sells 1985), and even simple cross-sentential
anaphora. Many formal systems have been proposed to capture them,
with ever-increasing complexity. This paper accounts for the same range
of phenomena with a radically simpler system that we call FOL-PLUS.
It extends First Order Logic (FOL) with three innovations: (i) bound
variables are marked in-place with brackets, rather than appearing on
their binder, e.g., ¬∃ . . . [x] . . . ¬ instead of ¬∃x . . . x . . . ¬ , (ii) a summation
operator Σxϕ combines all individuals x satisfying ϕ, and (iii) subformulas
may be stored and retrieved via new, capital-letter formula labels. Unlike
E-type approaches (Evans 1977), which pair pronouns with intuitively
“salient” descriptions, FOL-PLUS formalizes the connection between all
pronouns and their antecedents without requiring more and more com-
plex, nested situation structures (Heim 1990; Elbourne 2005). And unlike
dynamic approaches (Kamp 1981; Heim 1983; Groenendijk and Stokhof
1991; van den Berg 1996; Brasoveanu 2007), FOL-PLUS is completely
static and relies only on a single variable assignment (as contrasted, for
example, with the nondeterministic sets of sets of assignments required in
van den Berg (1996)). The paper compares FOL-PLUS directly to these
two approaches: a Heim and Kratzer (1998) style compositional transla-
tion system from natural language phrase structures into FOL-PLUS is
given, allowing a direct comparison with similar E-type systems; and a
formal proof is provided that FOL-PLUS has the same expressive power
as existing dynamic systems. Finally, the paper introduces the notion of
a discourse block, the somewhat surprising, single locus for all three
FOL-PLUS innovations: the scope of bound variables, the location of
summation operators, and the storage and retrieval of subformulas.

Keywords: E-type anaphora, dynamic semantics, plural dynamic logic,
dynamic predicate logic, improper scope, relational algebra

Declarations

Authors are listed in alphabetic order. Both authors contributed equally to
all aspects of the research and preparation of the work. The authors have no
relevant financial or non-financial interests to disclose.

1

Acknowledgements

We are grateful to Richmond Thomason for detailed comments. Remaining
errors are of course our own.

2

1 Introduction

1.1 Problem setting

Much research on anaphora in natural language centers around the following
cluster of phenomena, in which a pronoun has an antecedent that does not
syntactically bind it:

(1) a. Cross-sentential anaphora
A dog sauntered in. It sat down and barked.

b. Summation pronouns
Most students1 wrote a paper2. They1 left them2 on my desk.

c. Paycheck Pronouns (Karttunen 1969; Jacobson 2000)
The employee who saved her paycheck was wiser than the one who
cashed it.

d. Donkey pronouns (Geach 1962)
Every farmer who owns a donkey beats it.

e. Quantificational Subordination (Karttunen 1969; Sells 1985)
Most students wrote a paper. Some of them even turned it in.

If the antecedents of these pronouns are treated as quantifiers—as they usu-
ally are—these examples are problematic because the pronouns lie outside the
conventional scope of the quantifiers and thus should not be able to take the
quantifiers as antecedents. For this reason, we adopt the term improper scope
phenomena for the general class.1

There are two major approaches to improper scope phenomena. One, often
called the E-type approach, follows Evans (1977) in assuming a class of E-type
pronouns akin to definite descriptions, picking out a unique referent satisfying
some description. For instance, the pronouns in (1) might denote the dog who
sauntered in, the donkey the farmer owns, the students who wrote a paper, etc.
This approach is most often employed by semanticists working in a static con-
ception of semantics, for instance as proposed by Montague (1970). The main
weakness of the approach is the difficulty of defining precisely what the “salient
descriptions” are by which E-type pronouns identify a unique referent.

The second approach to improper scope phenomena developed within the
tradition of dynamic semantics. Under this approach, a context state is
maintained through the discourse, in which antecedents store and pronouns
retrieve discourse referents. For instance, one may take an indefinite DP like
a dog in (1a) to store an individual (namely, a particular dog) in the context
state as the value for variable x. A later pronoun, even one in a different
sentence, can retrieve the value of x from the context state. Unlike most E-type
systems, dynamic accounts fully formalize the relationship between antecedents
and pronouns. And yet, in attempting to capture the full range of phenomena

1The term E-type anaphora is frequently used, after Evans (1977, 1980), but we reserve
E-type for analyses stemming from the one that Evans proposes, not the empirical phenomena.

1

mentioned above, dynamic semanticists have found it necessary to propose ever
more complex context states. Moreover, dynamic systems struggle with cases
that the E-type approach captures easily, such as paycheck pronouns.

1.2 Back to basics

We present here a new logic for improper scope phenomena that builds directly
on First-Order predicate Logic (FOL) with a plural domain. To this classical
foundation, we make only three alterations: a form of unselective binding where
existentially bound variables are marked in-place instead of on their binder, a
summation operator to collect multiple values for a variable, and labels to store
and retrieve formulas. The resulting logic looks like (2):

(2) a. A girl saw a dog ⇝ ∃(girl([x]) ∧ dog([y]) ∧ saw(x, y))
b. The girls who saw a dog ⇝ Σx(girl([x]) ∧ dog([y]) ∧ saw(x, y))
c. Every girl who saw a dog pet it

⇝ Σx(
A(girl([x]) ∧ dog([y]) ∧ saw(x, y))) = Σx(A(pet(x, y)))

Simply put, the ¬∃¬ and ¬Σx
¬ operators existentially bind all bracketed variables

in their scope, and ¬Σxϕ
¬ denotes all values of x that satisfy ϕ. Superscript

labels like ¬Aϕ ¬ store ϕ for later retrieval via a subscript label: ¬

Aψ
¬ . And that

is the absolute entirety of the system.
We call the resulting system FOL-PLUS (FOL with Plurals, Labels, Unse-

lective binding, and Summation). It operates over the single, standard variable
assignment of FOL, rather than the (sets of) sets of assignments employed by
dynamic systems. And as a static system, it avoids the non-determinism which
further complicates dynamic logics. The only new operator in FOL-PLUS is

¬Σ ¬ , unlike the many special operators assumed, e.g., by Brasoveanu (2007). In
this way, FOL-PLUS is quite close to the static systems employed by E-type
theorists, just with a formal mechanism for deriving improper binding, akin
to dynamic semantics. Finally, despite its bare-bones simplicity, FOL-PLUS
derives all the empirical results of both the dynamic and E-type approaches.

We take this to be the main contribution of our paper; namely, showing how
such a basic system can still derive the results of its more complex predecessors.
In a sense, this also reveals something of the fundamental structure of natural-
language discourse, the essential elements any approach to improper scope must
include: some long-distance connection between indefinites and their binders;
some method of summing, or quantifying, over variables; and some higher form
of anaphora, whether formula labels in FOL-PLUS, the salient predicates of
E-type approaches, or the state complexification of dynamic systems.

Beyond simply describing these three essential elements, though, our re-
search has also revealed a somewhat surprising connection between them, which
we describe via the concept of a discourse block. It is not a new idea that dis-
course is organized into blocks comprising one or more natural language clauses.
Our new observation is that three seemingly unrelated phenomena intersect at
the block level:

2

The scope of indefinites Discourse blocks mark the scope of all indefinite
expressions within them (excepting those within another, embedded block).

The scope of sentential operators Discourse blocks are introduced by sen-
tential operators: existential closure, including existential closure below nega-
tion, and our new summation operator Σ. While it may be unsurprising that
indefinites take scope below existential closure, it is less obvious that they must
scope below an operator summing up individual denotations.

The locus of discourse anaphora Finally, and perhaps most surprisingly,
only full discourse blocks may serve as antecedents to a form of anaphora that
stores and retrieves full formulas. Furthermore, only full discourse blocks them-
selves may be anaphoric to previous blocks.

We have taken pains in this paper to facilitate easy comparison of FOL-PLUS
to previous approaches. To that end, the remainder of this section presents the
formal definition of FOL-PLUS, comparable to the logical meta-languages usu-
ally presented in the dynamic logic literature. Section 2 presents a translation
system from natural language into this meta-language, based on the familiar
system in Heim and Kratzer (1998), also commonly used in E-type approaches.
In so doing, we also give the empirical results of our approach. Section 3 com-
pares FOL-PLUS to Dynamic Predicate Logic, showing (contra Groenendijk
and Stokhof 1991) that a static system can, in fact, achieve the same expressive
power as their seminal dynamic system. Finally, section 4 discusses the two
main previous approaches to improper scope phenomena.

1.3 Formal definition of FOL-PLUS

Without further ado, we introduce our logic, First Order Logic with Plurals, La-
bels, Unselective binding, and Summation (FOL-PLUS). It takes as its starting
point standard first order predicate logic (FOL).

1.3.1 FOL

The interpretation function JϕK is defined with respect to a domain D of indi-
viduals and a model M over D, but the model is fixed for a given discourse and
thus we do not include it as an explicit parameter of JϕK. Where g and h are
assignment functions from variables to D, we define:

(3) a. g\V ≜ {⟨v, x⟩∈g : v ̸∈V } [domain subtraction]
b. g[V]h iff g\V = h\V [partial equivalence]
c. Cx,y,...ϕ(g, h) iff g[x, y, . . .]h and JϕKh=1 [variable closure]

In (3c), note that Cx,y,...ϕ denotes a relation that is applied to arguments g and
h. The FOL semantic-value function is defined in Figure 1.

In FOL, atomic formulas ‘p(x, y, . . .)’ are true if the values for variables
x, y, . . . provided by the assignment g satisfy the predicate p in the model M.

3

(4) Term denotations are individuals

a. JxKg = g(x) [simple terms]

(5) Formula denotations are 1 or 0

a. Jp(τ1, τ2, . . .)K
g
= 1 iff ⟨Jτ1Kg, Jτ2Kg, . . .⟩ ∈ M(p) [predication]

b. Jτ1 = τ2K
g

= 1 iff Jτ1K
g
= Jτ2K

g
[equality]

c. J¬ϕKg = 1 iff JϕKg = 0 [negation]
d. Jϕ ∧ ψKg = 1 iff JϕKg = JψKg = 1 [conjunction]
e. J∃x, y, . . . ϕKg = 1 iff ∃h .Cx,y,...ϕ(g, h) [existential quant.]

Figure 1: Formal Specification of FOL

A negated formula is true whenever its component formula is false. Conjunc-
tions require both component formulas to be true. Finally, existential quantifi-
cation over variables x, y, . . . is true whenever there exist values for x, y, . . . that
make the embedded formula true, as is more easily seen after substituting the
definition of Cx,y,...ϕ into (5e):

(6) J∃x, y, . . . ϕKg = 1 iff ∃h . g[x, y, . . .]h ∧ JϕKh=1

Our definition is nonconventional only in that we have introduced Cx,y,...ϕ as
a name for the relation between the “outer” contextual assignment g and the
“inner” contextual assignment h that arise in (6). The motivation is as follows.
Although we treat ∃x, y, . . . syncategorematically in (5e), one can think of it as
a sentential operator. In FOL, the semantic value of a sentence, JϕK, can be
thought of as a function from an assignment to a truth value; thus a sentential
operator takes a function from assignment to truth value and provides a function
from assignment to truth value, which is to say, a sentential operator is a 2-place
relation over assignments. Cx,y,... represents a generic sentential operator that
we use to implicitly define ∃x, y,

In particular, Cx,y,... is a general closure operator. Even if a formula ϕ is
sensitive to the values of x, y, . . ., the formula Cx,y,...ϕ is not, and in that sense
Cx,y,... closes the variables x, y, Formally:

(7) a. (The value of) an expression ϕ is sensitive to (the value of) variable
x just in case there are assignments h and h′ such that h[x]h′ and

JϕKh ̸= JϕKh
′
.

b. An operator ω closes a variable x iff, for all formulas ϕ (including
those that are sensitive to x), the formula ωϕ is insensitive to x.

Under this definition, Cx,y,... and hence ∃x, y, . . ., close the variables x, y,
Closure operators will play a special role in what follows. We consider each

closure operator to introduce a new block, and in FOL-PLUS, the block delimits
the scope of variables. To be precise:

(8) a. A closure expression is an expression Cϕ in which C is a closure

4

operator.
b. A closed block consists of all material contained in a closure ex-

pression, excluding any material contained in more deeply-embedded
closure expressions. (Note that the x subscript in Cxϕ lies within
the block Cxϕ.)

c. The root block consists of any material not contained in an em-
bedded closed block.

d. The blocks are the closed blocks and the root block.

1.3.2 FOL-PLUS

As a plural logic, the domain D of FOL-PLUS consists of pluralities, which for
technical simplicity we take to be sets of atoms, including singleton and empty
sets. In addition, as mentioned above, FOL-PLUS extends FOL in the following
three ways: (i) variables to be closed are marked in-place using brackets: ¬[x]¬ ,
and these are said to be local variables of their containing block; (ii) new terms

¬Σxϕ
¬ denote the union of all values for the variable x that satisfy the formula

ϕ; and (iii) subformulas may be labeled with capital letters and then retrieved
later. We first present the FOL-PLUS system in its entirety, and then we will
discuss these three extensions in more detail.

Syntax. A countably infinite set of variables x, y, . . . is provided, along with a
disjoint, countably infinite set of formula labels X,Y, A term is a variable,
a variable enclosed in brackets ¬[x]¬ , or an expression ¬Σxζ

¬ where x is a variable
and ζ is a formula or labeled formula. A formula is an expression whose form
is one of: ¬p(τ1, . . . , τn)

¬ , ¬¬ϕ ¬ , ¬ϕ ∧ ψ ¬ , or ¬∃ζ ¬ , where p is an n-place predicate
symbol, τi are terms, ϕ and ψ are formulas, and ζ is either a formula or labeled
formula. A half-labeled formula is an expression ¬

Xϕ
¬ where X is a formula label

and ϕ is a formula, and a labeled formula is an expression ¬Xη ¬ where X is a
formula label and η is a formula or half-labeled formula. (Intuitively, a formula
may have at most one superscript label and one subscript label, in that order,
and may only be labeled if it is the argument of a closure operator.)

Semantics. The domain D is the power set of Ω, the set of atoms. A model
M over D and a label-value assignment A are assumed to be fixed for a given
discourse. The domain of A is the set of formula labels, and A assigns a formula
of FOL-PLUS to each. An expression ϕ is suitable as the interpretation of a
complete discourse only if it is a well-formed root formula:

(9) An expression ϕ is a well-formed root formula iff:

a. ϕ is a formula;
b. If Xψ occurs anywhere in ϕ, then A(X) = ψ;
c. If X is retrieved anywhere in ϕ, then X is stored somewhere in ϕ;
d. There are no circular dependencies among formula labels.

Label X immediately depends on label Y if Y is retrieved in the formula A(X),

5

and depends on is the transitive closure. The semantic value of expression ϕ is
defined in Figure 2.

(10) Term denotations are pluralities (sets of atoms):

a. JxKg = J[x]Kg = g(x) [simple terms]
b. JΣxϕKg =

⋃
{h(x) : CLϕ

ϕ(g, h)} [summation terms]

(11) Formula denotations are 1 or 0:

a. Jp(τ1, τ2, . . .)K
g
= 1 iff ⟨Jτ1Kg, Jτ2Kg, . . .⟩∈M(p) [predication]

b. Jτ1 = τ2K
g

= 1 iff Jτ1K
g
= Jτ2K

g
[equality]

c. J¬ϕKg = 1 iff JϕKg = 0 [negation]
d. Jϕ ∧ ψKg = 1 iff JϕKg=JψKg=1 [conjunction]
e. J∃ϕKg = 1 iff ∃h .CLϕ

ϕ(g, h) [existential closure]

f.
q
Xϕ

yg
= JϕKg [formula storage]

g. JXϕKg = JA(X) ∧ ϕKg [formula retrieval]

(12) Local variables are bracketed variables not embedded in a subblock:

a. L[x] = {x}
b. Lx = ∅
c. LΣxϕ = L∃ϕ = ∅
d. LP(τ1,τ2,...) = Lτ1 ∪ Lτ2 ∪ . . .
e. L(ϕ∧ψ) = Lϕ ∪ Lψ
f. LXϕ = L¬ϕ = Lϕ
g. L

Xϕ = L(A(X)∧ϕ)

Figure 2: Formal Specification of FOL-PLUS

In brief, FOL-PLUS is FOL with the addition of summation terms (10b)
and labeled subformulas (11f) & (11g). Summation terms Σxϕ (i) perform a
closure of local variables via CLϕ

, and then (ii) denote the union of all values
for x that satisfy ϕ. Formula “storage” is implemented as an identity check in
the second clause of the definition of well-formedness (9); thus

q
Xϕ

yg
is simply

JϕKg. A formula retrieval expression Xϕ denotes the conjunction of the stored
formula A(X) with the current formula ϕ. Note that XY ϕ is an abbreviation for
X(Y ϕ), inasmuch as Y (

Xϕ) is syntactically ill-formed.
Otherwise, the definitions for FOL-PLUS are identical to those of FOL, with

the exception that existential closure (11e) is unselective in FOL-PLUS. Instead
of closing a named set of variables, FOL-PLUS existentials ¬∃ϕ ¬ close all of ϕ’s
local variables Lϕ. A full recursive definition of Lϕ is given in (12), but, in a
word, the local variables of ϕ are the variables that occur bracketed in ϕ, where
“in ϕ” means not embedded in a subblock introduced by ∃ or Σ. Free variables
of ϕ that are not local variables are called external variables.

To reduce clutter, we will henceforth assume that the variables to be closed
by C are the local variables of its complement, if not otherwise specified:

(13) Cϕ is shorthand for CLϕ
ϕ.

For convenience, the remaining common operators may be defined in the

6

usual way. As defined operators, they are nonessential:

(14) a. ϕ ∨ ψ is shorthand for ¬(¬ϕ ∧ ¬ψ)
b. ϕ→ ψ is shorthand for ¬(ϕ ∧ ¬ψ)
c. ∀ϕ is shorthand for ¬∃¬ϕ
d. ∼ϕ is shorthand for ¬∃ϕ

“Dynamic” negation (14d) is less familiar than the others, but is widely used in
the dynamic logic literature.

1.4 Discussion

FOL-PLUS is not without antecedents. Irene Heim’s (1982) dissertation pro-
poses treating indefinites as variables, whose quantificational force comes from
higher operators. The dynamic semantics she introduces (Chapter 3) is particu-
larly well known, but she also presents a static system (Chapter 2) in which sen-
tences, and complete discourses, essentially denote propositions, returning truth
values relative to a contextual assignment of values to indices. Following Lewis
(1975), Heim even describes the need to distinguish local and external variables
within each operator’s block (Heim calls these blocks “operator-headed molec-
ular formulas”). In particular, Heim’s operators close the local variables (those
introduced by indefinites) in their scope, while allowing non-local variables to
essentially scope out. FOL-PLUS is partly inspired by that system.

Further, the FOL-PLUS summation operator bears similarities to an Ab-
straction operator that Kamp and Reyle (1993) propose, which returns a set of
individuals which satisfy a formula when substituted for a particular variable,
i.e., {x′ : ϕ[x 7→x′]}. And the idea of labeled subformulas is adopted outright
from Keshet (2018), who proposes update variables that store and retrieve the
meanings of subformulas in a larger formula. What is special about FOL-PLUS
is the way it combines these features into a system that is radically simpler than
previous systems, without any sacrifice of empirical coverage.

Let us examine each of the distinguishing features of FOL-PLUS in more
detail, after which we turn to the empirical coverage of the system.

1.4.1 Unselective quantification

In FOL-PLUS, the free variables of an open formula are divided into local and
external variables; the former, but not the latter, are marked for closure. For
example, in (15a), both x and y are free, but x is local (that is, bracketed)
whereas y is external. Closure operators like ∃ in FOL-PLUS are unselec-
tive (Lewis 1975; Heim 1982), in that they close all local variables in their
scope block. Thus, (15b) has the same interpretation as the FOL formula

¬∃x (dog(x) ∧ saw(x, y)) ¬ . And just like this FOL formula, in (15b), only y
is free, and it is again external. In (15c), only y is free, and it is local. Note
that the properties free, local, and external apply to variables with respect to a
containing expression, not to individual variable occurrences.

7

(15) a. dog([x]) ∧ saw(x, y)
b. ∃ (dog([x]) ∧ saw(x, y))
c. ∃ (dog([x]) ∧ saw(x, y)) ∧ cat([y])

Incidentally, when ϕ contains no local variables, ∃ϕ is equivalent to ϕ: for
example, ∃dog(x) is equivalent to dog(x).

FOL-PLUS does not forbid cataphora: the expression ¬p([x]) ∧ q(x) ¬ has
exactly the same interpretation as ¬q(x)∧p([x]) ¬ . Bracketing a variable a second
time in the same block is also not forbidden, though it has no additional effect.
Let us say that an expression is in standard form if it satisfies the following
syntactic conditions:2

(16) a. In a given block, if a variable occurs in bracketed form, then every
unbracketed occurrence of the same variable follows the bracketed
occurrence.

b. No variable is bracketed multiple times in the same block.

Any FOL-PLUS expression can be converted to standard form without chang-
ing its meaning, by moving brackets to the front of the block. To convert an
expression ϕ to standard form, for each block in ϕ, let L be the local variables of
the block. Delete brackets from all bracketed variable occurrences in the block,
then, where L = {x, y, . . .}, replace the root expression ψ of the block with:

(17) T([x]) ∧ T([y]) ∧ . . . ∧ ψ

where T is a predicate that returns constant true (concretely, we may define

T(τ) ∆
= τ=τ). For example, (18a) becomes (18b):

(18) a. p(x) ∧ q([x],
∑
y(r(y, [y]) ∧ s(x, [y])))

b. T([x]) ∧ p(x) ∧ q(x,
∑
y(T([y]) ∧ r(y, y) ∧ s(x, y)))

Conversion may also be done recursively, in which case an expression T(x) may
arise with an unbracketed variable x; any such expression may be deleted.

1.4.2 Summation terms

Generalized quantifiers are captured in FOL-PLUS via summation terms:

(19) every (Σxperson([x]),Σx(person([x]) ∧ person([y]) ∧ needs(x, y)))
“Everybody needs somebody”

In (19), ¬Σxperson([x])
¬ denotes the union of every value for x that satisfies the

predicate person, i.e., everybody. Likewise, ¬Σx(person([x]) ∧ person([y]) ∧
needs(x, y)) ¬ denotes

⋃
{x : ∃y(person(x) ∧ person(y) ∧ needs(x, y))}, i.e.,

2Where C is a closure operator, note that a block CXϕ that incorporates the formula
labeled X by reference is considered to contain any bracketed variable that occurs free in
A(X).

8

everybody who needs somebody.3

1.4.3 Labeled subformulas

Following the DUAL system of Keshet (2018), FOL-PLUS allows labeling of
subformulas for later reference. In fact, this feature can simplify the analysis of
generalized quantifiers, as shown in (20), which is equivalent to (19):

(20) every
(
Σx

X(person([x])) ,Σx
Y
X(person([y]) ∧ needs(x, y))

)
“Everybody needs somebody”

Here, the restrictor formula ¬X(person([x])) ¬ assigns the label X to the sub-
formula ¬person([x]) ¬ . The subscript X on the nuclear scope formula then
retrieves and incorporates the formula with label X.4

The pattern X1ϕ1 . . .
X2

X1
ϕ2 . . .

X3

X2
ϕ3 . . . is common. One may think of each

segment Xi

Xi−1
ϕi as a continuation that “resumes the thread” of the one before,

and for that reason we call it block threading. We observe that, in the case
of generalized quantifiers, conservativity is an immediate consequence of block
threading. This hardly constitutes an explanation for conservativity, though it

3To more rigorously derive the paraphrases just given, consider the following, in which
“. . . [x] . . . [y] . . . z . . .” stands for an arbitrary formula in which x and y represent local variables
and z is a representative external variable:

(i) JΣx(. . . [x] . . . [y] . . . z . . .)Kg

a. =
⋃
{h(x) : C(. . . [x] . . . [y] . . . z . . .)(g, h)}

b. =
⋃
{h(x) : g[x, y]h ∧ J. . . [x] . . . [y] . . . z . . .Kh = 1}

c. =
⋃
{u : ∃h(h(x) = u ∧ g[x, y]h ∧ (. . . h(x) . . . h(y) . . . h(z) . . .))}

d. =
⋃
{u : ∃h(g[y]h ∧ (. . . u . . . h(y) . . . g(z) . . .))}

e. =
⋃
{u : ∃v(. . . u . . . v . . . g(z) . . .)}

f. =
⋃
{x : ∃y(. . . x . . . y . . . g(z) . . .)}

g. = J
⋃
{x : ∃y(. . . x . . . y . . . z . . .)} Kg

In short, we can paraphrase a Σx expression with the union of a standard set abstraction,
provided that (1) we existentially close all local variables other than the variable of summation,
and (2) we leave external variables free, to pick up their values from the context of evaluation.
In particular:

(ii) a. Σx person([x]) =
⋃
{x : person(x)}

b. Σx (person([x]) ∧ person([y]) ∧ needs(x, y))
=

⋃
{x : ∃y (person(x) ∧ person(y) ∧ needs(x, y))}

4For simplicity, we use expressions of FOL-PLUS as values for formula labels, but if one
prefers values that are not bound to the particular syntax of FOL-PLUS, it is possible to
do so. Let us define the import of an expression ϕ to include not only its semantic-value

function JϕK ∆
= λg . JϕKg , but also its local variables:

(i) import(ϕ)
∆
= (JϕK , Lϕ)

As an alternative to using ϕ itself as A(X), one may use the import of ϕ. Two expressions are
fully equivalent if and only if they have the same import. Having the same truth function
is necessary but not sufficient. Among other things, two expressions are interchangeable as
the argument of C if and only if they are fully equivalent.

9

does make it a special case of a more general pattern.

2 Empirical Results

In this section, we present our main empirical results. In keeping with practice
in the dynamic semantics literature, we often give the FOL-PLUS formula for
natural-language sentences, but to facilitate comparison to the E-type literature,
we also provide a formal translation function from natural language parse trees
to FOL-PLUS, in the style of Heim and Kratzer (1998). We will show that,
despite its simplicity, FOL-PLUS covers all major improper scope phenomena
at least as well as alternative approaches, whether E-type or dynamic.

2.1 A Compositional Translation

For familiarity, and ease of comparison to E-type proposals, we will interpret
natural language expressions in a system as close as possible to the standard
Heim and Kratzer (1998) system, with the main substantive difference being
the use of FOL-PLUS, instead of English, as a meta-language. This is quite
different from the usual approach in the plural dynamic semantics literature
(e.g. Brasoveanu 2007), which builds on the Compositional DRT system due
to Muskens (1996). Our hope is that combining a familiar logic (FOL) with a
familiar interpretation procedure (Heim and Kratzer 1998) will itself contribute
to our comparison of various approaches to improper scope phenomena.

To aid in this project, we will first need to introduce lambda expressions into
FOL-PLUS. We do so only as a temporary expedient, though—we will design
the translation so that all lambda expressions are eliminated when the output
expression is simplified. Although the lambda expressions themselves are rather
intuitive, the technical details are somewhat complex. Please see Appendix A
for details, but the two major items that allow lambda functions in FOL-PLUS
are (i) the conversion of every expression to standard form before β-reduction,
and (ii) the liberal use of fresh variables, which we will conventionally notate
using (decorated versions of) the variable z.

Next, we will use a translation function ′ that takes a tree α as input and
returns an expression α′ of FOL-PLUS as output. The translation from α to
α′ defines the (Heim & Kratzer-style) semantic value of α indirectly via the
definition in (21). This allows us to define semantic types for natural-language
and FOL-PLUS expressions as usual: e for individuals, t for truth values, and
⟨σ, τ⟩ for functions from σ to τ . Finally, we will often use the “squiggly arrow”
notation shown in (22) to improve readability, especially when translating a
larger phrase or sentence.

(21) JαKg ∆
= Jα′Kg

(22) α⇝ β
∆
= α′ = β

10

2.1.1 Rules of Interpretation

With (21) in place, all of the standard Heim & Kratzer rules can be restated as
rules translating from natural language into FOL-PLUS:

(23) Traces and Pronouns (TP): αx ⇝ x and αx ⇝ [x]
for any trace or pronoun α and lowercase index x.

Terminal Nodes (TN): α′ is listed in the lexicon
for other lexical terminal nodes α.

Non-branching Nodes (NN): [α β]⇝ β′

for any non-branching node α whose child is β.
Functional Application (FA): [α β γ]⇝ β′(γ′) and [α γ β]⇝ β′(γ′)

for any branching node whose children are β of type ⟨σ, τ⟩ and γ
of type σ, where β is not a closure operator.

Predicate Modification: [α β γ]⇝ λz . β′(z) ∧ γ′(z)
for any branching node α with children β and γ both of type ⟨e, t⟩,
where z is a fresh variable.

Predicate Abstraction (PA): [α λz β]⇝ λz . β′

for any branching node α whose children are a relative operator λ
indexed z and β of type t, where z is a fresh variable.

Notice that the rules above assume lowercase syntactic indices which correspond
to variables in FOL-PLUS. Superscript variables on pronouns and traces trans-
late to bracketed variables and subscripts to unbracketed variables.5

Next, we add two new rules, the second of which assumes uppercase, prefixed
syntactic indices corresponding to formula labels in FOL-PLUS:

(24) Discourse Conjunction (DC): [α β γ]⇝ β′ ∧ γ′
for any discourse α with children β and γ, both of type t.

Discourse Functional Application (DFA): [α βx
X
Y γ]⇝ β′

x

(
X
Y γ

′)
for any branching node α whose children are a closure operator β
with optional lowercase index x and γ of type t with optional up-
percase indices X and Y .

Discourse Conjunction merely codifies assumptions already present in prior
(static semantics) literature, extending the Heim & Kratzer system to interpret
multi-sentence discourses. It can be conceived of as a generalization of Predicate
Modification to the zero-place predicate (type t) denotations of sentences and
discourses, which are interpreted via simple conjunction (cf. Keenan and Faltz
1978; Gazdar 1980; Rooth and Partee 1983). Discourse Functional Application
is essentially a special case of functional application (FA). We list it separately
as it deals with the subscripts and superscripts on the closure operator and its
argument. DFA is the only point at which formula-label storage and retrieval
is introduced. Formula-label storage and retrieval arguably formalizes a type
of anaphora that has been posited, for instance, to connect phrases to their

5This, and the superscript formula labels, follow a convention due to Barwise (1987)
whereby superscript indices mark antecedents.

11

focus antecedents (Rooth 1992; Schwarzschild 1999). It can also be viewed as a
variety of ellipsis, another process that has been proposed for E-type anaphora
(Elbourne 2005).

2.1.2 Lexical Entries

Some illustrative lexical entries are given below, where z, z1, z2, etc. are always
fresh variables:

(25) a. Closure operators: Sx ⇝ Σx, E⇝ ∃, N⇝ ∼
b. Indefinite determiners: ax ⇝ λz1λz2 . z1([x]) ∧ z2(x)

Same for anyx, somex, etc.
c. Common Ns, As, Vs: dog ⇝ λz .dog(z)

Same for brown, bark, etc.
d. Transitive items: saw ⇝ λz1λz2 . saw(z2, z1)

Same for ate, fond, in, etc.
e. Quantificational Ds: most ⇝ λz1λz2 .most(z1, z2)

Same for every, few, exactly nine, etc.
f. Empty NPs: ⟨⟩⇝ T (constant true)

Finally:

(26) Unless otherwise specified, both uppercase and lowercase indices may
be added to any node without changing its interpretation.

2.2 Some basic examples

Simple pronouns and traces translate as variables:

(27) a. itd barked ⇝ barked′(itd
′) = barked(d) [FA]

b. td barked ⇝ barked(d) [FA]

The treatment of noun modification and relative clauses is adopted unchanged
from Heim and Kratzer:

(28) a. thatz barked ⇝ λz(barked(z)) [PA]
b. dog [thatz1 barked]

⇝ λz2(dog(z2) ∧ λz1(barked(z1))(z2)) [PM]
β⇒ λz2(dog(z2) ∧ barked(z2))

The syntactic λ operator that is introduced by quantifier raising (QR) behaves
exactly like a relative pronoun:

(29) λz [tz barked] ⇝ λz(barked(z)) [PA]

Indefinites are treated syntactically as generalized quantifiers, albeit rather
simple ones; see (25b). Following standard assumptions, they raise via QR
to take scope over the clause core, and this movement introduces a syntactic λ

12

operator. As mentioned above, we assume a fresh variable for this λ and convert
to standard form before β-reduction.

(30) [ad dog] barked
QR⇒ [ad dog] [λz1 [tz1 barked]]
⇝ (λz2λz3 . z2([d]) ∧ z3(d))(dog)(λz1 barked(z1))
std⇒ T([d]) ∧ (λz2λz3 . z2(d) ∧ z3(d))(dog)(λz1 barked(z1))
β⇒ T([d]) ∧ dog(d) ∧ barked(d)

An example with two indefinites:

(31) [af farmer] owns [ad donkey]
QR⇒ [af farmer] λz1 [[ad donkey] λz2 [tz1 owns tz2]]

The portion beginning with [ad donkey] translates just as (30), yielding (32a).
(The transitive verb introduces additional lambdas, but they are eliminated by
β-reduction.) The pattern is then repeated to combine [af farmer] with its
arguments, yielding (32b).

(32) a. [[ad donkey] λz2 [tz1 owns tz2]]
⇒ T([d]) ∧ donkey(d) ∧ owns(z1, d)

b. [[af farmer] λz1 [[ad donkey] λz2 [tz1 owns tz2]]]
⇝ (λz2λz3 . z2([f]) ∧ z3(f))(farmer)

(λz1 .T([d]) ∧ donkey(d) ∧ owns(z1, d))
std⇒ T([f]) ∧ T([d]) ∧ (λz2λz3 . z2(f) ∧ z3(f))(farmer)

(λz1 .donkey(d) ∧ owns(z1, d))
β⇒ T([f]) ∧ T([d]) ∧ farmer(f) ∧ donkey(d) ∧ owns(f, d)

As a final simplification step, expressions T([x]) can be eliminated by moving the
brackets to the next occurrence of the same variable in the same block, and we
will generally do so for the sake of readability; e.g., (32) becomes farmer([f])∧
donkey([d]) ∧ owns(f, d).

2.3 Discourse interpretation

We follow Heim (1982) in assuming that multiple sentences of a discourse form
a single interpretable structure, with an existential closure operator (for us, E)
taking scope over the entire discourse. A discourse may be extended without
limit by adjoining sentences, but to determine a truth value for the final result,
one must “cap” it with a E operator:

(33)

[
E
[[

[S0 S1] S2
]
. . . Sn

]]
The sentences in (33) are combined via Discourse Conjunction, with the final

E operator interpreted using the Discourse Functional Application rule. This is
essential for distinguishing the interpretation of an indefinite from a pronoun:

13

(34) a. Shex saw himy ⇝ saw(x, y)
b. Shex saw someoney ⇝ saw(x, [y])

Recall that these two formulas have identical truth conditions, since brackets
do not directly affect the interpretations of variables. And yet, the sentence in
(34b), where y is introduced by an indefinite, is felicitous without any previous
mention of individual y; but (34a), where y is used solely as a pronoun index, is
only felicitous when a referent for y has been established, whether in previous
discourse, by pointing, etc. (Both sentences require previous mention of x.)

Once E is added, though, we actually do get different truth conditions for
the two sentences (as reflected in the differing FOL paraphrases):

(35) a. E Shex saw someoney ⇝ ∃(saw(x, [y])) ≡ ∃y (saw(x, y))

b. E Shex saw himy ⇝ ∃(saw(x, y)) ≡ saw(x, y)

The differences in meaning bear on felicity, as well. Any variables external to
the discourse as a whole must be assigned felicitous values by the contextual
assignment g that is used to interpret the discourse, if the discourse is to receive
an interpretation. In the formalization of Figure 2, we assumed, in keeping with
established practice, that assignments are total functions over the countably
infinite set of variables. For the purposes of an account of felicity, one may either
follow Heim and assume that assignments are partial functions, or, equivalently,
designate one or more values as “non-values” such as ⋆, and deem the value of
a variable x to be undefined if g(x) is ⋆. We assume that, unless the value of a
variable is determined by the non-linguistic context of the discourse, its value
is undefined in the contextual assignment used to interpret the discourse. We
can then summarize the truth and felicity conditions of a discourse as follows:

(36) A discourse [E α] is only felicitous relative to a contextual assignment g
when g(x) is not undefined, for all external variables x of α. If felicitous,
the discourse is true iff JE αKg=1.

If one uses partial assignments, a discourse ϕ is felicitous relative to g only if
JϕKg is defined.

2.4 Summation Pronouns

We turn now to summation pronouns, illustrated in (37):

(37) Everyone λz [S t
z [VP brought ap present]]B . They are on that table.

Standard E-type analyses take pronouns such as they in (37) to be complex:
they apply a function f to one or more arguments of type e. For instance,
in cases like (37), Heim (1990, p.172) suggests an analysis like (38). A salient
function (f below) relates groups of individuals to the presents they brought.
When this function is applied to an implicit free variable (a below) denoting a
salient set of partygoers, we derive the desired denotation:

14

(38) JtheyKg = J[f a]Kg, where perhaps

a. g(a) = a salient group of partygoers
b. g(f) = [λx . the presents that x brought]

There is a natural implementation, parallel to Heim’s, in terms of summa-
tion. Consider the FOL-PLUS expression given in (39a), that translates the S
node in (37). The desired interpretation for they is given in (39b), namely, the
sum of values for p across assignments that satisfy (39a), which is paraphrased
in FOL as (39c).

(39) a. S ⇝ present([p]) ∧ brought([z], p)
b. they ⇝ Σp (present([p]) ∧ brought([z], p))
c. ≡

⋃
{p : ∃z (present(p) ∧ brought(z, p))}

We obtain the desired translation (39b) by assuming the syntactic structure (40)
for this variety of pronoun, similar to the structure of E-type complex pronouns.

(40) DP

D

they

NP

Sp B⟨⟩

We call pronouns with this structure summation pronouns. In (40), Sp is
a syntactic closure operator, interpreted via Discourse Functional Application,
that translates to Σp (25a), and B⟨⟩ is an empty NP that translates to a tau-
tological constant (25f). The subscript formula label B does not affect the
interpretation of B⟨⟩, but is incorporated by DFA into the translation of the
intermediate node:

(41) [Sp B⟨⟩] ⇝ ΣpBT.

There is an anaphoric dependency on a previous node in the discourse, namely
the S in (37). The formula-label index B on this S ensures that A(B) =

¬present([p]) ∧ brought([z], p)¬ . The index B on ⟨⟩ retrieves this formula:

(42) ΣpBT = Σp(present([p]) ∧ brought([z], p))

We assume that the overt pronoun they itself contributes little to the denotation:
perhaps simply number and gender presuppositions, as well as an existential
presupposition to be discussed below.

Recall that even inside closed blocks, the values for external variables come
from the contextual assignment g. This is motivated by examples like (43):

(43) Everyone λz
G[tz gave hery a

p present]. [They Sp G⟨⟩] are on that table.

a. A(G) = present([p]) ∧ gave([z], y, p)

15

b. JSp G⟨⟩Kg =
⋃
{h(p) : (CA(G))(g, h)}

=
⋃
{h(p) : C (present([p]) ∧ gave([z], y, p)) (g, h)}

≡
⋃
{p : ∃z (present(p) ∧ gave(x, g(y), p))}

Here, the pronoun hery represents an external variable, established either else-
where in the discourse or by the extra-linguistic context. Rather than being
existentially closed in the definition of they, like the local variable z, the exter-
nal variable y takes its value from the context: note the g(y) in the last line of
(43b), which is a FOL paraphrase. The set of presents denoted by they varies
with the individual y denoted by her.

Discussion. We now have two kinds of pronominal DPs: simple pronouns,
marked with a lowercase subscript variable, and summation pronouns, combin-
ing with a summation operator. To give these two a parallel analysis, we could
analyze simple pronouns as combining with an empty pronominal element ex:

(44) DP

them ex

DP

them NP

Sx X⟨⟩
Simple Pronoun Summation Pronoun

Under this view, it is possible to define the lexical pronoun them consistently
across both types. The complements of this D are ex and [Sx X⟨⟩], which
translate as x and Σx(XT), both of which denote pluralities. Thus, by FA, a
pronoun is a function of type ⟨e, e⟩. To give a few examples:

(45) a. JherK = [λz : |z|=1 ∧ female(z) . z]
b. JitK = [λz : |z|=1 ∧ inanimate(z) . z]
c. JthemK = [λz : |z|>1 . z]

The major difference between the two pronoun types is that summation
pronouns are exhaustive, referring to a certain set of individuals defined earlier,
while simple pronouns vary in value according to the assignment. This difference
is illustrated in (46), after an example in Evans (1977), where two different
second sentences bring out the two readings of the same pronoun. As Evans
notes, them in (46a) is most easily heard as an exhaustive pronoun, comprising
all of John’s sheep. This, then, is a summation pronoun, deriving its value
from a formula label stored by the previous sentence. But they in (46b) clearly
denotes a subset of John’s sheep; in this case, we have a simple pronoun.

(46) John owns some sheep down on his farm.

a. His neighbor Harry vaccinates them in the spring.
b. They got out last night while the rest of his sheep were sleeping.

16

Another important difference between the types is that antecedents to simple
pronouns are strictly constrained to their containing block, while summation
pronouns may make use of formula labels defined in a deeply embedded position.
For instance, when the variable in question is local to an embedded block, only
the exhaustive, summation reading (47a) is available, as predicted:

(47) Every farmer around here owns some sheep.

a. Harry vaccinates them in the spring.
b. #They got out while the other sheep in their flock were sleeping.

In fact, formula-label anaphora is so free that it allows reference out of typically
inaccessible contexts, such as negation. This freedom helps explain cases that
traditional dynamic systems struggle with, such as double negation:

(48) a. It’s not N like hex doesn’t N O[tx own ac car].
b. [It Sc O⟨⟩]’s just in the shop.

The pronoun it in (48b) is perfectly acceptable, even though its antecedent is
embedded (twice) under negation. It denotes the sum of all cars that x owns.
The use of the singular pronoun presupposes that this sum is a singleton—i.e.,
x owns one car—which is easily accommodated. Despite this flexibility, the
system also restricts anaphora out of negation where it should be restricted:

(49) a. Hex doesn’t N O[tx own ac car].
b. #[It Sc O⟨⟩]’s in his garage.

Here, (49a) asserts that x doesn’t own a car, and therefore the presupposition
of the pronoun cannot be met: if x owns no cars, there is no way for the sum
of all his cars to be a singleton; it will instead be empty.6

Finally, formula-label anaphora can explain so-called wide-scope, or referen-
tial, indefinites (Fodor and Sag 1982), which seem to scope out of an apparent
scope island. One class of explanations for wide-scope indefinites takes them to
simply denote a value that does not vary across the values of a higher quanti-
fier (Reinhart 1997; Winter 1997; Kratzer and Shimoyama 2002; Schwarzschild
2002; Brasoveanu and Farkas 2011). For instance, she in (50) seems to refer to
a single teacher; and yet, the apparent antecedent is within a scope island:

(50) Everyone B [tz believes that at teacher from my school is better than
theirs]. [She St B⟨⟩] is rather talented.

(51) StB⟨⟩ ⇝ Σt(BT) = Σt (teacher([t]) ∧ believes-better([z], t))

6Similar effects can be seen in downward entailing environments, as shown in (i). The first
clause of (i) is compatible with there being no congressmen who admire Kennedy, although
its most salient reading is strengthened by an implicature excluding this case. Notice that
the existence presupposition of the pronoun they in the second clause also requires there to
be (multiple, in fact) congressmen who admire Kennedy. Either the strengthened meaning of
(i) is assumed, or else this presupposition is accommodated to allow the use of the pronoun.

(i) Few congressmen admire Kennedy, and they are very junior. (Evans 1980)

17

The value in (51) is the set of teachers that someone believes to be better
than their own. If it just so happens that everyone thinks the same teacher is
better than their own, then that set will indeed be a singleton. Under such an
explanation, the singular marking on she arises because it is a singleton, and
yet everything else is the same as in the plural cases.

2.5 Paycheck Pronouns

Summation pronouns can also handle paycheck pronouns (Karttunen 1969),
so-called because of examples like (52).

(52) The woman who saved her paycheck was wiser than the woman who
spent it. (cf. Jacobson 2000)

Although paycheck pronouns are easily accommodated within E-type approaches,
they are notoriously difficult for plural dynamic logics to capture (Nouwen 2020).
We handle them by using formula anaphora (again) as a replacement for E-type
“salient functions.” Take the case in (53), for instance. Standard plural logics
only store individuals already mentioned or quantified over. So, after (53a),
they would only store the dioramas that girls made and brought to class, not
any other dioramas. And yet the pronoun it in (53b) seems to refer to dioramas
left at home, new individuals not mentioned before.

(53) a. Almost every girl brought the diorama she made to class.
b. A few left it at home, though.

In our system, a summation pronoun may reference a discourse node, but
evaluate it in a new context, i.e., under a new assignment (cf. Keshet 2018).
Take the following structures for (53):

(54) a. Almost every girl
Sz t

z brought [DP the Sd
M [NP td diorama shez made]]

b. A few Sz t
z left [it Sd M ⟨⟩] at home.

The structure assigned to the definite DP in (54a) parallels the structure (40)
assigned to summation pronouns. Its NP, with superscript M , provides the
antecedent to the empty NP M ⟨⟩ in the summation pronoun in (54b). But the
antecedent NP contains an external variable, namely z, the quantified variable
of the sentence in (54a). The meaning of M ⟨⟩ in (54b) therefore also varies with
the external variable z, as shown in the following denotation (shown in FOL).

(55) Jit Sd M ⟨⟩Kg =
⋃
{d : diorama(d) ∧made(g(z), d)}

In the new context, z is bound by the quantifer of (54b), which quantifies over
the few girls who forgot their dioramas. Thus, the pronoun overall refers to
these forgotten dioramas rather than the ones brought to class. This is the
hallmark of a paycheck pronoun.7

7Jacobson (2000) points out scenarios like the following, where a paycheck pronoun seems

18

2.6 Quantification

We now turn to the analysis of quantifiers, which, like summation pronouns,
also employ the summation operator. In fact, in our system, quantificational
determiners are simple two-place predicates of type ⟨e, ⟨e, t⟩⟩, both of whose
arguments are created via S (cf. Barwise and Cooper 1981). A bit of syntactic
housekeeping is required, though, to shape the arguments of a standard gener-
alized quantifier into a form suitable for the summation operator. Consider first
the following preliminary analysis, along with a meaning for most :

(56) Sd

DPd

Dd

mostd Sd
DDPd

Dd

td

NP

dogs

Sd
BSd

td VP

bark

(57) most ⇝ [λre.λse.most(r, s)] ≡
[
λre.λse.|r∩s| > 1

2 |r|
]

to get its antecedent from the extralinguistic context:

(i) A new faculty member picks up her first paycheck from her mailbox. Waving it in the
air, she says to a colleague: Do most faculty members deposit it in the Credit Union?
[Meaning: Do most faculty members deposit their paycheck in the Credit Union?]

Elbourne (2005) claims that this is easily understood in E-Type analyses, which already make
frequent use of contextually supplied relations. Here, the “salient” relation must be something
like “her paycheck” (or for Elbourne: “the paycheck in situation s”). But one has no way of
distinguishing this from countless other relations that Elbourne would not wish to consider
“salient”; see the discussion in 4.1 below. By contrast, dynamic theories (and FOL-PLUS)
provide highly constrained meanings for all pronouns whose antecedents are provided by the
linguistic context. We should not throw out this successful work simply because pronouns
may also occasionally take antecedents from extralinguistic sources.

Instead, we propose that a gesture such as the waving of one’s paycheck in (i) is incorporated
into the discourse as a communicative act, contributing a meaning along the lines of (ii). That
is, “look at my paycheck,” just as pointing to an object might contribute the meaning Look
at that. After all, the gesture is not successful unless the addressee (viewer) recognizes what
the speaker is waving. The formula label P in (ii) is then available for subsequent anaphoric
reference. We note in passing that this analysis is more straightforward in a translational
semantics, versus a direct semantics like Heim & Kratzer. A logical language such as FOL-
PLUS provides a common representation for meanings that spans both spoken utterances and
gestures in a natural way.

(ii) me([x]) ∧ behold(Σp
P (paycheck-of([p], x)))

19

We make a couple of assumptions regarding inheritance of indices:

(58) a. A trace inherits all the indices of its antecedent.
b. Indices are inherited from heads and subjects.

(58b) entails the d index on both DPs and both Ss. (The d on the lower DP and
the one on the lower S are only there for consistency, but the one on the upper
DP is essential, and the one on the upper S will play a role in the discussion of
example (88) below.) We assume that both the D and DP undergo movement,
leaving a trace and introducing a summation operator, both coindexed with
the moved item. By TP, the traces are interpreted as bracketed variables, the
superscript providing the variable. When the traces combine with the original
NP and VP, they form nodes of type t. As complements of S, they constitute
blocks, and we have labeled them with superscript formula labels. Finally, the
S operators introduced by movement take the type t nodes and yield pluralities:

(59) a. td ⇝ [d] [TP]
b. [td dogs] ⇝ dog([d]) [FA]
c. [Sd

D[td dogs]] ⇝ Σd
Ddog([d]) [DFA]

(60) [Sd
B [td bark]] ⇝ Σd

Bbark([d])

The set (59c) is the set of dogs and (60) is the set of things that bark. The former
is the restrictor set and the latter is the simple scope set. The intersection of
restrictor set and simple scope set is called the reference set (Nouwen 2003a):
here, the set of dogs that bark. A suitable predicate denotation for most is
given, most, which compares the reference set to the restrictor set, deriving the
correct truth conditions.

Empirical considerations lead us to refine this preliminary analysis in one
respect. We have hypothesized that all and only blocks are possible antecedents
for formula anaphora. And yet, it seems that the simple scope set (things that
bark) is not a possible antecedent, while the reference set (dogs that bark) is:

(61) Most dogs bark.

a. And most of them are loud, except pugs.
(=Most dogs that bark are loud, except pugs.)

b. #And most of them are loud, except seals.
(Intended: Most things that bark are loud, except seals.)

This pattern of facts suggests that we revise the analysis in (56) to replace
the node BS, whose summation denotes the unneeded simple scope set, with
a node whose summation denotes the actually available reference set. Doing
so is also concordant with the postulate by Barwise and Cooper (1981) that
determiners are conservative, in the sense that they always denote a relation
between the restrictor set and the reference set, not the simple scope set.

A minimal change to structure (56), shown in (63), suffices both to capture
the anaphoric facts and to assure suitable arguments for determiner relations:
we add subscript D to the nuclear scope (now labeled B

DS) in order to incorpo-

20

rate the meaning of the restriction into the nuclear scope. The only difference
between (63) and (56) is the addition of the subscript formula labels D and B
to a few nodes, triggered by the following new assumption:

(62) In the structure [XP X [Sx YP]], any superscript formula label on YP
is inherited as a subscript formula label on XP (overriding label inher-
itance from X).

(63) BS
d

DDPd

Dd

mostd Sd
DDPd

td dogs

Sd
B
DS

d

Dt
d VP

bark

Thus the upper DP obtains the subscript formula label D, which is then
inherited by its trace and thence by the nuclear-scope S. (Likewise, the upper
S inherits the B of the lower S as a subscript formula label. That plays no role
currently, but will in the discussion of example (88).) The label D on the trace
of the DP, Dt

d, has no effect on its interpretation, by (26). But the labels on the
nuclear-scope B

DS
d show up as labels in the FOL-PLUS translation; the result

is an example of block threading (see section 1.4.3).
The denotation of most is simpler now. Its second argument, s, is the full

reference set rather than the simple scope set:

(64) most ⇝ [λre.λse.most(r, s)] ≈
[
λre.λse.|s| > 1

2 |r|
]

In our example, the translation of the first argument of most (59c) is unchanged,
but a subscript D is added to the translation of the second argument (60), by
DFA. The resulting translation for (63) is:

(65) most(Σd
Ddog([d]),Σd

B
Dbark([d]))

The first summation denotes all dogs, and the second all dogs that bark.
Again, parallel to (43) above, closure does not capture external variables.

For instance, hersx in (66) will get its value from the external context, rather
than being closed within the quantification.

(66) a. Everyf friend of hersx waved.
b. every(Σf

Ffriend-of([f], x),Σf
W
F waved([f]))

≡ every(Σffr’-of([f], x),Σf (fr’-of([f], x) ∧waved([f])))

The denotations of the summations vary with the choice of value for x.

21

2.7 Donkey Pronouns

The structure for quantifiers presented thus far embeds the meaning of the
restrictor into the nuclear scope, via an uppercase subscript. A benefit of this
analysis is that it readily explains donkey pronouns (Geach 1962):

(67) Everyone who owns an umbrella brought it today.

The pronoun it in (67) operates differently from the summation pronouns thus
far analyzed: it does not seem to denote the result of a summation, which in this
case might be the set of all owned umbrellas. Instead, for each umbrella-owner
x, it denotes whichever umbrella x brought today. This is explained, though, by
the inclusion of the restrictor inside the nuclear scope. Consider the following:

(68) Every Sx
O[DP tx one who owns anu umbrella]

Sx
B
O[S Ot

x brought itu today.]

(69) a. ODP ⇝ umbrella([u]) ∧ owns([x], u)
b. B

OS ⇝ brought(x, u)
c. Sx

B
OS ⇝ Σx

B
Obrought(x, u)

≡ Σx
B(umb’lla([u]) ∧ owns([x], u) ∧ bro’t(x, u))

d.
q
Sx

B
OS

yg
=

⋃
{x : ∃u(umb’lla(u) ∧ owns(x, u) ∧ bro’t(x, u))}

The nuclear scope B
OS effectively carries the denotation of its antecedent ODP,

and therefore requires that u be an umbrella that x owns. BOS will thus be true
under all assignments where u is an umbrella that x owns and brought today.

This case is most easily understood as a so-called weak donkey pronoun
(Schubert and Pelletier 1989): the umbrella owners in question need not have
brought all of their umbrellas for the sentence to be true. The most likely
scenario (since people usually only carry one umbrella) is that even those who
own more than one umbrella only brought one, and the sentence is perfectly
acceptable in this scenario, as predicted. The weak donkey reading is also
compatible with the less likely (but not impossible) scenario that one of the
multiple-umbrella owners brought more than one umbrella, perhaps as a backup
or for a friend. The weak analysis allows but does not require such a scenario.

Interestingly, summation pronouns of the form “Su B⟨⟩”, as in (70), will
denote all the umbrellas that were actually brought. In the most likely one-
umbrella-per-person scenario, the number of these umbrellas would be equal to
the number of umbrellas owners. However, in the scenario where at least one
multiple-umbrella owner brought more than one umbrella, (70) asserts that all
of the umbrellas are in the rack, not just one per owner. So, although only one
per owner is required for the truth of (67), all brought umbrellas are included
in later anaphora like (70). And this is exactly as predicted.

(70) [They Su B⟨⟩] are in that rack.

Plural Donkey Pronouns. Plural indefinites can give rise to donkey anaphora
as well, as illustrated by the structure in (72) for (71):

22

(71) Everyone who owns any sneakers wore them today.

(72) Every Sz
O[DP tz one who owns anyy sneakers]

Sz
W
O [S Ot

z wore themy today]

The most salient reading for (71) is one requiring sneaker-owners to wear only
some of their sneakers (typically one per foot), rather than all of them. This is
captured nicely by the analysis described above, with values like the following
for the restrictor and nuclear scope:

(73) a. Sz
ODP ⇝ Σz(sneakers([y]) ∧ owns([z], y))

b. Sz
W
O S ⇝ Σz(sneakers([y]) ∧ owns([z], y) ∧wore(z, y))

(73a) is the set sneaker-owners, and (73b) is the set of individuals that own and
wore at least one sneaker.

And yet other plural cases have different readings. For instance, the most
salient reading for (74) is that each person locked up all their (own) valuables.
And (75) most plainly means that each student commented on all the response
papers, their own and others’:

(74) Everyone who brought any valuables locked them up.

(75) Everyone who wrote any response papers commented on them all during
class.

The case (75) is not captured by most dynamic plural systems (for details see
Nouwen 2003b), but it is actually simpler to capture than (74) in our system.
Consider the following structure:

(76) Every Sz
W [DP tz one who wrote anyy papers]

Sz
C
W [S W t

z commented on [them Sy W ⟨⟩] today.]

Here we have analyzed them as a summation pronoun, collecting all values for
y in the discourse value of WDP. Since z is local, this will denote the following:

(77) Sy W ⟨⟩ ⇝ Σy (papers([y]) ∧wrote([z], y))

In other words, it will be all papers anyone wrote.
This is not the correct analysis for (74), though, because (74) only requires

each person to lock up their own valuables, rather than everyone’s valuables.
Consider first the following potential analysis of this case:

(78) Every Sz
B [DP tz one who brought anyy valuables]

Sz
L
B [S Bt

x locked themy up]

As in the umbrella case above, this analysis is compatible with a scenario where
each person locked up all of their (own) valuables, but does not require this.
And yet, there seems to be a reading of (74) that does require this total locking
up. We consider it likely that the best account will turn out to involve a variety
of scalar implicature—when the speaker refers to a person z bringing a set

23

of valuables v, the speaker is unlikely to have in mind a set v that is some
undistinguished proper subset of the (entire) set of valuables that z brought.

Nonetheless, a semantic account that entails totality is available, and we
present it for consideration. It is not implausible that, in addition to the treat-
ment of any as a simple indefinite, the option of treating it as a generalized
quantifier is available. For example, (79) translates as (80). The value of label
B is ¬valuables([v]) ∧ brought(z, [v])¬ . Thus, the summation pronoun [them
Sv B⟨⟩] denotes the set of valuables that z brought, and includes all valuables
that z brought.

(79) Every Sz
A[DP tz one whoz any Sv V [t

v valuables]
Sv

B
V [tz brought V t

v]]

Sz
L
A[S At

z locked [them Sv B⟨⟩] up]

(80) every

(
Σz

Asome

(
ΣvV valuables([v]),
Σv

B
V brought(z, [v])

)
,Σz

L
Alocked(z,ΣvBT)

)
Strong Donkey Pronouns. The example we just considered is quite similar
to the so-called strong reading of singular donkey pronouns, where the nuclear
scope must be true of all instantiations of the donkey pronoun (e.g., x brought
all x’s umbrellas or locked up all x’s valuables). And analyzing the “donkey”
indefinite as a generalized quantifier derives precisely the exhaustive reading for
cases like the following:

(81) Everyone who brought something valuable locked it up.

As with the umbrellas, (81) is again most acceptable in a situation where each
person brought exactly one valuable item. And yet, hearers will accept the
sentence when a few people brought more than one. In such a case, the most
salient reading is the strong donkey reading, in which each person who brought
multiple valuable items locked up all of their valuables. Again, the best analysis
is probably pragmatic—the speaker presupposes a single valuable item, and
the exhaustive reading arises when the hearer extrapolates to what the speaker
would have said if they had considered the more general case—but a semantic
analysis is also possible, as follows:

(82) Every Sz
A[DP tz one whoz some Sv

T [DP tv thing valuable]
Sv

B
T [S tz brought Bt

v]]

Sz
L
A[S At

z locked [it Sv B⟨⟩] up]

The value of label B contains an external occurrence of z, and the summation
pronoun [it Sv B⟨⟩] denotes the (entire) set of valuable things that z brought. If
no one brought more than one valuable item, that set is always a singleton, and
the singular presupposition of it is satisfied. It seems, though, that this presup-
position may be relaxed in edge cases, where v is singular for most values of z,
even if it is plural for a a minority. (The singular presupposition of something
must be relaxed similarly.)

24

Conditional Donkey Pronouns. While the system we present here is en-
tirely extensional, we can analyze donkey anaphora in conditional sentences at
least as well as other extensional systems, such as DPL or DRT. As is often done,
we have taken the material conditional p → q to be shorthand for ¬(p ∧ ¬q);
see (14b) above. A “dynamic conditional” may be analogously defined, using
“dynamic negation” (14d):

(83) if ⇝ λpλq .∼(p ∧ ∼q)

This gives us (84b) as the FOL-PLUS translation for (84a); a FOL paraphrase
is also provided. (Recall that ∃ϕ is equivalent to ϕ if ϕ has no local variables.)

(84) a. If any girl owned an umbrella, she brought it today.
b. ¬∃

(
girl([x]) ∧ umb’lla([u]) ∧ owns(x, u) ∧ ¬∃(bro’t(x, u))

)
≡ ¬∃x∃u(girl(x) ∧ umb’lla(u) ∧ owns(x, u) ∧ ¬bro’t(x, u))

This account is adequate within the limitations of an extensional system. A
more sophisticated account would analyze conditionals as modal generalized
quantifiers, parallel to the generalized quantifiers we discussed above, but a
proper development would take us well beyond the scope of the current paper.

Discussion. The analysis of donkey anaphora presented here hinges on two
key elements: (1) formula labels introduce a covert copy of the restrictor within
the nuclear scope of a quantifier, and (2) an indefinite in the covert formula
may be referenced in the overt expression. For example, in (67), the restrictor
O = umbrella([u]) ∧ owns([z], u) is included by label in the nuclear scope
O ∧ brought([z], u), permitting reference to the umbrella u. Restrictor and
nuclear scope are separately closed by summation operators Sz ⇝ Σz.

This approach is different both from standard E-type analyses, which treat
donkey pronouns as hidden definites (e.g., the umbrella x owns), and from stan-
dard dynamic analyses, which directly extend the scope of the indefinite from
the restrictor to the nuclear scope. Our hybrid approach side-steps many of the
well-known problems with the two traditional approaches, described in Section
4, such as The Problem of the Formal Link, The Proportion Problem, and The
Problem of Indistinguishable Participants.

2.8 Subordination

The phenomenon of quantificational subordination is illustrated in (85), with a
first sentence, followed by two different possible second sentences:

(85) Almost every student brought an umbrella today.

a. Most (of them) used it, too.
b. Every one (of them) who used it stayed dry.

Previous works (e.g. Karttunen 1969; Sells 1985) have noted that an indefinite
embedded under a quantifier, such as an umbrella under most students in (85),

25

may serve as an antecedent to pronouns in the nuclear scope of later quantifiers
over the same individuals, such asmost (of them) in (85a). Such later quantifiers
are said to be subordinate to the previous quantifier, hence the name of the
phenomenon. We extend the usual set of examples by observing that such
pronouns may appear not only in the nuclear scope of subordinate quantifiers,
but also in their restrictors, as in every one (of them) who used it in (85b).

Quantificational subordination is accommodated under our approach by
adding a subscript formula label to the subordinate quantifier to indicate that
it is formally anaphoric to the main quantification. As before, this formula label
also appears on the trace of the quantifier (D) and thus also on the restrictor.
The structure is otherwise identical to the generalized quantifier structure that
we have assumed to now.

(86) Almost everyz Sz
S [tz student] Sz

B
S [St

z brought anu umbrella]

a. BMostz Sz
M
B [Bt

z (of them)] Sx M [M t
z used itu, too]

b. BEvery
z Sz

E
B [Bt

z one who used itu] Sz E [Et
z stayed dry].

In this way, quantificational subordination is simply another example of block
threading (section 1.4.3). In garden-variety generalized quantification, the quan-
tificational DP (e.g., almost every student) bears the formula label that appears
on the restrictor (here, S), the DP’s trace (here, St

z) shares the same label
by (58a), and the trace, by (58b), passes the label on to the nuclear scope
(BS [brought an umbrella]). By that syntactic mechanism, the restrictor meaning
is threaded into the nuclear scope. What is special about quantificational sub-
ordination is that the subordinate quantifier bears an anaphoric label, and the
mechanism just described thereby causes the antecedent block to be threaded
into the meaning of the restrictor. An indefinite in any imported block may be
referenced by a simple pronoun—thus u in the restriction of (86b) and in the
nuclear scope of (86a).

Discussion. There appears to be an interesting connection between the up-
percase and lowercase indices on a subordinate quantificational determiner. For
instance, consider the two sentences below:8

(87) Mostz girls W [tz wrote ap final paper].

a. Eachp of [them Sp W ⟨⟩] was a masterpiece.
b. #Eachp of [them Sp W ⟨⟩] earned herz an A.

(87a) is a straightforward cases of a summation pronoun whose value derives
from an indefinite in a previous sentence. Here, S sums up all the papers p
written by a girl x, and each (of) distributes over this sum individual. This is
not a case of subordination, and does not require an uppercase variable subscript
W on the quantifier each. Notice that the block introduced by the S in the
summation pronoun does not extend beyond the summation pronoun itself.

8Lecture notes by Heim credit Keny Chastain with a similar observation.

26

Thus no occurrence of z outside of this block can refer to the girls mentioned
in W . And indeed, the attempted reference to a girl in (87b) sounds quite odd.

But what if we choose to interpret each as subordinate:

(88) #WEachp E
W [W t

p (of them)] E [Et
p earned herz an A].

Here the restriction, subscripted W , is anaphoric to the previous nuclear scope
block W . Since E resumes the thread of W , and W contains the indefinite z,
it should be possible to refer to z (the girl that wrote the paper) in the nuclear
scope, but the sentence sounds quite odd.

Subordination is in fact not freely available. The conditions that permit
it are not entirely well-understood, but for this particular case we can give
a reasonable syntactic explanation. Consider again the generalized quantifier
structure (63). Recall, in particular, that the root node, by (58b), bears the
lowercase index of the head quantifier and the uppercase label of the nuclear
scope. Thus, in (87), the root sentence has labels WSz, with z from the head
mostz and W from the nuclear scope. But the anaphoric quantifier in (88)
has labels W eachp. If an anaphoric quantifier is subject to the same agreement
condition (58a) that holds between a trace and its antecedent, the ill-formedness
of (88) is explained as an index mismatch between anaphor and antecedent. This
is at least one case in which subordination is not available. (In the well-formed
cases of (86), the anaphoric quantifier agrees with its antecedent with respect
to both indices.)

2.9 Conclusion

Our goals in this section have been twofold: (1) to show that the empirical
coverage of FOL-PLUS includes the full gamut of cases of improper binding
that have been discussed in the literature, and (2) to provide an apples-to-
apples comparison between FOL-PLUS and E-type approaches, showing that
the FOL-PLUS account is more explicit and satisfactory than E-type accounts
at several points. In the dynamic semantics literature, logical translations of
natural-language sentences are often given on the basis of intuition, rather than
formally computed by a translation function. We have explicitly presented the
FOL-PLUS translations of many of the examples, and we hope those translations
are sufficient to convince the reader that it is fair to compare our translations
to the intuitional translations of the dynamic literature.

3 FOL-PLUS and dynamic logic

3.1 Precis

In this section, we consider the relationship between static logics and dynamic
logics. As representative of dynamic logics, we take Dynamic Predicate Logic
(DPL) (Groenendijk and Stokhof 1991), which provides a foundation for systems
such as those of van den Berg (1996) and Brasoveanu (2007), and is formally

27

essentially identical to Discourse Representation Theory (DRT) (Kamp 1981);
see van Eijck (1999) for a formalization of DRT that brings out the similarities
to DPL. By dynamic logic, we understand a system that defines the meaning
JπK of an expression π to be a nondeterministic mapping from some input state
to an output state, and we understand static logic to be a system in which JϕKg

is a truth value, or, equivalently, in which JϕK is a set of assignments.
Groenendijk and Stokhof themselves compare their dynamic logic DPL to

FOL (the canonical static logic), concluding that DPL is strictly more expressive
than FOL. Their argument implicitly rests, however, on the assumption that the
proper basis for such a comparison is via truth conditions, defining an expression
of dynamic logic (henceforth, a program) to be true just in case it produces
an output. Under this assumption, dynamic meanings are clearly finer-grained
than static meanings, inasmuch as pairs of programs exist that have the same
truth conditions but different input-output mappings, whereas it is impossible
for two programs to compute the same mapping but to differ in truth conditions.
This view has been taken up by much of the later literature, as well. For
example, the Stanford Encyclopedia of Philosophy asserts that “what dynamic
semantics provides is a generalization of truth conditional semantics The
classical meanings become the preconditions for success of the discourse actions.
. . . classical meanings are recoverable from the relational dynamic meanings as
projections onto their ‘input’ coordinate” (Nouwen et al. 2022, their emphasis).

We do not dispute that truth conditions are coarser-grained than input-
output mappings, but we do dispute the idea that truth conditions are the
proper basis for comparison. The asymmetry that Groenendijk and Stokhof
observe is not intrinsic to static logics, but to truth conditions. A static formula
also defines an input-output mapping, in a natural and familiar way, and when
we use input-output mappings for comparison, the assymetry disappears. In
particular, we will show that the FOL subset of FOL-PLUS is strongly equivalent
to DPL, in the sense that for every program there is a corresponding formula
that defines the same input-output mapping, and vice versa.

Formulas are widely used in mathematics to define mappings. For example,
one typically represents the unit circle by the equation x2+y2 = 1, understand-
ing it to implicitly define the mapping (“multi-valued function”) y = ±

√
1− x2.

The implicit representation is used for example in the technique of implicit dif-
ferentiation, where one differentiates the function by applying differentiation
rules to the equation that implicitly represents it. More broadly, mathematics
texts are rife with expressions like “consider y as a function of x in the equation
ϕ.” Even beginning algebra students are familiar with this notion, when they
are asked to “solve for y” in an equation involving variables x and y. And in
addition to characterizing the structures that satisfy it, a fundamental use of a
model is to define relations within a given structure: a relation is first-order
definable just in case (glossing over some technical details) there is a formula
of FOL that implicitly defines it; see for example Boolos and Jeffrey (1980).9

9Using open formulas to define relations, and viewing the satisfaction set JϕK as the graph
of a relation, are fundamental to relational algebra in the theory of databases (Codd 1970;

28

Consider an open formula of FOL, such as:

(89) p(x) ∧ q(x, y)

Call that formula ϕ. It determines a particular relation between its free vari-
ables. Thinking of the relation as a nondeterministic mapping in which x is the
independent variable (the input) and y is the dependent variable (the output),
we write the relation as fϕ:

(90) fϕ(x, y) iff p(x) ∧ q(x, y)

More generally, there may be multiple independent variables x = (x1, . . . , xm)
and multiple dependent variables y = (y1, . . . , yn). In the general case, we have:

(91) fϕ(a, b) iff ∃h(h(x) = a ∧ h(y) = b ∧ JϕKh = 1),

where h(x) abbreviates h(x1), . . . , h(xm). Conversely:

(92) JϕKh = 1 iff fϕ(h(x), h(y)).

To use a formula to define a mapping, via (91), we require one thing beyond
the formula itself, namely, a way of distinguishing between dependent and inde-
pendent variables. FOL-PLUS has a ready-made mechanism for this purpose:
the brackets that mark local variables. Let us define the above-mentioned “FOL
subset of FOL-PLUS” to be the language that remains if we exclude summation
and formula labels, and if we restrict the domain to singleton pluralities (indi-
viduals); let us call the resulting language FOL-U. FOL-U differs from FOL only
in replacing ∃x(. . .) with ∃(. . . [x] . . .). Moreover, we understand the brackets
to mark dependent variables. That is, the dependent variables are the local
variables and the independent variables are the external variables: y = Lϕ and
x = Xϕ, where Xϕ is the set of free variables of ϕ that are not in Lϕ.

Turning now to dynamic semantics, a program defines a mapping from ma-
chine state to machine state, where Groenendijk and Stokhof took a machine
state to be exhaustively characterized by the values it assigns to variables in
memory. As a technical expedient, they used assignments to represent states,
an assignment being a total function whose domain is the (countably infinite)
set of variables of the language, and they took the dynamic relation defined
by a program to be a relation D(g, h) between pairs of assignments g and h.
But more basic is the input-output mapping f(x,y), where, in the case of a
program, x = (x1, . . . , xm) is the set of input variables and y = (y1, . . . , yn) is
the set of output variables. The dynamic relation is then:

(93) D(g, h) iff f(g(x), h(y)). [revised below]

Now Groenendijk and Stokhof impose an additional constraint on the rela-
tionship between input state g and output state h: they require not only that g

Ullman 1998). Relational algebra does not, however, distinguish between dependent and
independent variables—or rather, a choice of which variables to include in the output is made
on a query-by-query basis.

29

and h correctly represent the mapping from input values to output values, but
also that g and h differ only with respect to output variables. That is, instead
of (93), they adopt:

(94) D(g, h) iff f(g(x), h(y)) ∧ g[y]h.

This additional constraint seems undesirable. Intuitively, an implementation
that maps the values of x to values of y correctly, but also changes the contents
of unused memory cells, does not thereby become an incorrect implementation,
and yet (94) rules it out. Be that as it may, we accept (94) as established
practice.

For a DPL program π, the dynamic relation is the meaning JπK:

(95) Dπ = JπK. [Def.]

where JπK is defined in Figure 3.

(96) a. JP (α1, . . . , αn)K (g, h)
iff g = h ∧ JP (α1, . . . , αn)K

h
= 1 [pred. appl.]

b. Jα = βK (g, h) iff g = h ∧ Jα = βKh = 1 [equation]
c. J [α] K (g, h) iff g\α = h\α [assignment]
d. J∼ρK (g, h) iff g = h ∧ ¬∃k(JρK (g, k)) [dyn. negation]
e. Jρ1; ρ2K (g, h) iff ∃k(Jρ1K (g, k) ∧ Jρ2K (k, h)) [dyn. conjunction]

Figure 3: Formal definition of the interpretation function JπK of Dynamic Pred-
icate Logic (DPL).

For a FOL-U formula ϕ, substituting (92) into (94) gives us a natural, indepen-
dent definition of the dynamic relation defined by a static formula:

(97) Dϕ(g, h) iff JϕKh = 1 ∧ g[Lϕ]h. [Def.]

Our main goal is to show that FOL-U is strongly equivalent to DPL, in the sense
that there is a one-one correspondence between DPL programs π and FOL-U
formulas π′ such that:

(98) Dπ′ = Dπ.

Once we have established a strong equivalence between FOL-U and DPL, it
becomes trivial to introduce non-singleton pluralities, summation (Σx), and
formula labels into DPL. The result can be thought of as a dynamic “view”
of FOL-PLUS. It is directly comparable to, but vastly simpler than, dynamic
systems such as those of van den Berg or Brasoveanu, and yet, as we have seen
in the previous section, it covers all significant improper binding phenomena.

30

3.2 The translation from DPL to FOL-U

In order to prove (98), we must first establish a one-one correspondence between
DPL programs and FOL-U. We adopt the translation function that is defined
in Figure 4.

(99) a. P (x1, . . . , xn) ↔ P (x1, . . . , xn).
b. x1 = x2 ↔ x1 = x2.
c. [x] ↔ T([x]).
d. π1;π2 ↔ π′

1 ∧ π′
2.

e. ∼π ↔ ¬∃π′.

Figure 4: The FOL-U translation function π′ = FOL-U(π). The input π is a
DPL program and the output π′ is a formula of FOL-U.

Not every FOL-U formula is in the range of the FOL-U translation function,
but it is easy to see that the translation function does constitute a one-one cor-
respondence between DPL and a subset of FOL-U: one can reverse the operator
substitutions of (99) to map π′ back (unambiguously) to π.

The fact that the range of translation is a proper subset of FOL-U means
that there are dynamic relations that are definable in FOL-U but not in DPL.
An example is:

(100) ¬P ([x]).

The dynamic relation D¬P ([x])(g, h) holds just in case ¬P (h(x)) ∧ g[x]h, a dy-
namic relation that is not expressible in DPL.10

The FOL-U translation differs in an important way from the correspondence
that Groenendijk and Stokhof implicitly assume when they compare DPL and
FOL, which is given in Figure 5.11

(101) a. P (x1, . . . , xn) ⇝ P (x1, . . . , xn).
b. x1 = x2 ⇝ x1 = x2.
c. [x];π ⇝ ∃xπ′.
d. ∼π ⇝ ¬π′.
e. π1;π2 ⇝ π′

1 ∧ π′
2 [if (c) does not apply].

Figure 5: The Groenendijk and Stokhof Translation from DPL to FOL, π′ =
FOL-GS(π).

10Some readers may consider that lack of expressiveness to be a positive thing, in that it
“makes an empirical claim” about what is available in natural language. We see no advantage
that such an “implicit claim” has over making an explicit assertion (“natural language negation
always embeds an existential closure”), but one could certainly make the same “implicit claim”
by adopting a version of FOL-U that uses ∼ in place of ¬.

11Groenendijk and Stokhof actually use FOL syntax for DPL; the FOL-GS translation
function actually represents the conversion from the syntax of Figure 3 to the syntax used by
Groenendijk and Stokhof.

31

Note that an existential closure ¬∃x ¬ occurs immediately in the translation of a
bracketed variable ¬[x]¬ . This contrasts with our translation FOL-U(π), where
existential closure is delayed until the application of negation. For example:

(102) a. [x];dog(x)
FOL-U
⇝ T([x]) ∧ dog(x)

b. [x];dog(x)
FOL-GS
⇝ ∃xdog(x)

As a consequence, under the FOL-GS translation, no bracketed variable ever
occurs as a free variable, and it is impossible to use the FOL-GS translations as
definitions of input-output mappings.12

Let us write g |= π to mean that π is true under assignment g. Groenendijk
and Stokhof define the truth conditions of a program π as:

(103) g |= π iff ∃h(JπK (g, h)).

For a formula ϕ, the truth conditions are:

(104) g |= ϕ iff JϕKg = 1.

Groenendijk and Stokhof show that, where π′ = FOL-GS(π):

(105) g |= π iff g |= π′.

The same is not true under the FOL-U translation. Rather, if π′ = FOL-U(π):

(106) g |= π iff g |= ∃π′.

The ¬∃¬ in (106) discards the information about the values of local variables
in π′, and in that way represents an obvious loss of information; that loss of
information is what gives rise to the assymetry between truth conditions and
dynamic relations that Groenendijk and Stokhof observe.

3.3 Proof of equivalence

Input and output variables. A first question is how to identify the input
variables and output variables of a program. Identifying them will be facilitated
if we view dynamic conjunctions as flat n-place conjunctions, in which each
conjunct is is either a bracketed variable or a test (the tests being predicate
applications, equations, and negations). Replacing binary conjunction with flat
n-place conjunction is justified by the associativity of dynamic conjunction.

Let us begin with output variables. An output variable is one whose value
in the output is set by the program, not simply copied from the input. In a
DPL program, a statement of form [x] sets the value of variable x. But not
every occurrence of [x] in a program sets a value that survives into the program
output. In particular, if [x] is encapsulated in a negation, the value that is

12The statement in the text assumes that the original program is in standard form (see
section 3.3 below for the definition of standard form for programs). In non-standard examples
like P (x); [x];Q(x), the x of P (x) and the x ofQ(x) are (intuitively speaking) different variables
with the same name.

32

assigned to x is essentially discarded: if ∼π has an output on input g, that
output is g itself.

Define the blocks of a program π to be π itself (the root block) and the com-
plements of negations occurring anywhere in π (embedded blocks). A bracketed
variable occurrence in an embedded block is “encapsulated” and does not affect
program output. Conversely, a bracketed variable occurrence that is not in an
embedded block is an output variable occurrence.

(107) x is an output variable of π just in case there is an occurrence of [x]
in π that is not contained in an embedded block.

An input variable is one whose value in the input is read by the program.
Obviously, an input variable must occur in unbracketed form in the program,
but that is not a sufficient condition. If x is the unbracketed occurrence, and a
previous occurrence [x] sets the value that x reads, then x obviously does not
read the input value. We can define the input variables of program π recursively
as follows:

(108) a. If π is a bracketed-variable statement [x], it has no input variables.
b. If π is of form P (x1, . . . , xn) or x1 = x2 (n = 2), its input variables

are x1, . . . , xn.
c. If π is a negation of form ∼ρ, its input variables are the input

variables of ρ.
d. If π is a conjunction ρ1; . . . ; ρn, then x is an input variable of π

iff x is an input variable of ρj and no ρi with i < j has form [x].

Standard form. It is possible for a variable to be both an input variable and
an output variable, but only if the program resets its value.

(109) The variable x is reset in π just in case π is a conjunction ρ1; . . . ; ρn,
x is an input variable of ρi, and ρj has form [x], for i < j.

Let us say that a block is in standard form iff it does not reset any variables.
A program is in standard form iff all of its blocks are in standard form. If a
program is in standard form, we can drop the condition “i < j” in (108d), and
the sets of input variables and output variables are disjoint.

In general, dynamic conjunction is not commutative, because reordering con-
juncts can change binding relationships, as illustrated in the difference between
P (x); [x] and [x];P (x). However, for an expression that is in standard form, cer-
tain reorderings are meaning-preserving. In particular, if a conjunction π1; [x]
is in standard form, then x is not an input variable of π1, hence if g[x]h then
Jπ1K (g, g) is true iff Jπ1K (h, h). Thus π1; [x] is equivalent to [x];π1. That is,
in standard form, bracketed variables may be moved to the front of a conjunc-
tion without changing the dynamic meaning.13 We may then without loss of
generality assume that all conjunctions have the form:

13Even in standard form, dynamic conjunction is not fully commutative; we may not reorder
[x];P (x) to P (x); [x]. But reorderings in which bracketed variables move leftward are valid.

33

(110) [x1]; . . . ; [xm];π1; . . . ;πn

where x1, . . . , xm are the output variables of the conjunction and each πi is a
test (namely, a predicate application, equation, or negation).

With that rearrangement, it becomes straightforward to show that, for any
DPL program π and FOL-U translation π′:

(111) a. The input variables of π are Xπ′ .
b. The output variables of π are Lπ′ .
c. π is in standard form iff π′ is in standard form.

We require one additional lemma: tests have no output variables. By definition,
an output variable is one whose value may differ between input and output, but
for a test π (by definition), JπK (g, h) iff g = h and JπK (g, g).

Main proof. We turn now to the equivalence of DPL and FOL-U (98). We
will prove equivalence only under the assumption of standard form. We consider
that to be a mild assumption, however, on the grounds that (1) we assumed stan-
dard form exclusively in the empirical discussion of section 2, (2) we are unaware
of analyses in the literature that use [x] to reset the value of a variable whose
value has previously been set, and (3) a program π that is not in standard form
can be converted to standard form by renaming output variables that appear as
input variables. Renaming output variables does change the dynamic relation
Dπ but it does not change the input-output mapping fπ, and we consider the
input-output mapping to be definitive.

We wish to show that, for any DPL program π in standard form, with
π′ = FOL-U(π), we have Dπ′ = Dπ. That is, substituting in definitions (95)
and (97), we wish to show that, for all g and h:

(112) JπK (g, h) iff g[Lπ′]h ∧ h ∈ Jπ′K.

The proof is recursive on the structure of the program. The base cases are the
atomic formulas. Recall that JπK is defined in Figure 3 and Jπ′K is defined in
Figure 2 (omitting the clauses for Σx and formula labels), and we make frequent
implicit use of the clauses of those definitions.

(113) a. For π of form ¬P (x1, . . . , xn)
¬ or ¬x1 = x2

¬ (n = 2), we have
JπK (g, h) iff g = h and h ∈ Jπ′K, which (because Lπ′ = ∅) is
equivalent to: JπK (g, h) iff g[Lπ′]h ∧ h ∈ Jπ′K.

b. For π of form ¬[x]¬ , we have JπK (g, h) iff g[x]h, Lπ′ = {x}, and
h ∈ Jπ′K always. Thus JπK (g, h) iff g[Lπ′]h ∧ h ∈ Jπ′K.

The recursive cases are conjunction and negation. By recursive hypothesis,
JρK (g, h) iff g[Lρ′]h ∧ h ∈ Jρ′K, for all subexpressions ρ.

(114) a. If π is a conjunction, it may be written in form [x1]; . . . ; [xm]; ρ1; . . . ; ρn,
where all ρi are tests. The FOL-U translation has form T([x1]) ∧
. . .∧T([xm])∧ψ1∧. . .∧ψn. Since the ρi are tests, we have Lρ′i = ∅,

34

and JρiK (g, h) iff g = h ∧ JρiK (h, h), iff g = h ∧ h ∈ Jρ′iK. Thus
JπK (g, h) iff g[x1, . . . , xm]h and h ∈ Jρ′1 ∧ . . . ∧ ρ′nK. The conjuncts
T([xi]) are tautologically true, so h ∈ Jρ′1 ∧ . . . ∧ ρ′nK iff h ∈ Jπ′K.
Since Lρ′i = ∅ for all ρi, the local variables of π′ are x1, . . . , xm,
yielding JπK (g, h) iff g[Lπ′]h ∧ h ∈ Jπ′K.

b. If π is a negation, it has form ∼ρ, and JπK (g, h) iff g = h∧JπK (g, g)
iff g = h ∧ ¬∃k(JρK (g, k)). Using the recursive hypothesis, the
latter is equivalent to ¬∃k(g[Lρ′]k ∧ k ∈ Jρ′K). Since π′ is the
FOL-U translation of π, it has the form ¬∃ρ′; thus, by (11e) and
(3c), h ∈ Jπ′K iff ¬∃k(g[Lρ′]k ∧ k ∈ Jρ′K). Thus JπK (g, h) iff
g = h ∧ h ∈ Jπ′K, iff g[Lπ′]h ∧ h ∈ Jπ′K (since Lπ′ = ∅).

4 Assessing the Two Major Approaches

4.1 E-type Approach

Classic E-type proposals assume “free variables [which] refer to contextually
salient entities of the appropriate type,” (Heim 1990, p. 139) such as a salient
function mapping a farmer to a donkey. However, they are vague about what
qualifies as contextually salient. This leads to overgeneration problems, as il-
lustrated in (115), due to Heim (1990). Even though the successor function
(mapping each integer to the next higher one) is made quite salient, it cannot
support it as an E-type pronoun. This example illustrates the so-called Problem
of the Formal Link (Kadmon 1987), the observation that even E-type pronouns
require a nominal antecedent. In this same vein, Heim (1982) points out cases
like (116), where two phrases with near identical meanings nevertheless have
different anaphoric potential. Early E-type analyses could not explain how the
function mapping men to wives would be salient in (116a) but not (116b).

(115) #Speaking of the successor function, every number is smaller than it.
(Intended: Every number is smaller than its successor.)

(116) a. Every man who has a wife sat next to her.
b. ??Every married man sat next to her.

The E-type approach also suffers from undergeneration, arising from the
uniqueness that singular E-type pronouns require to make the extension of their
description a single individual. Again, Heim (1982) provides the crucial exam-
ple: although it in (117) must invoke a salient function mapping people to the
sage plants they bought, the sentence itself asserts that this function never has
a unique output since each person bought, say, a flat of nine plants.

(117) Everybody who bought a sage plant bought eight others along with it.

Elbourne (2005) undertakes to solve these problems. To stem the overgen-
eration problem, he proposes that E-type pronouns involve NP deletion, a form
of ellipsis targeting a recently mentioned NP. For instance, under his analysis,

35

the pronoun her in (116a) has the same denotation as the definite description
the wife, with the NP wife deleted based on its mention earlier in the sentence.
However, her in (116b) lacks any such NP to support a similar ellipsis.

The undergeneration problem in (117) requires a bit more machinery, though,
since the pronoun here would essentially mean the sage plant under Elbourne’s
analysis, and this scenario necessarily includes many multiples of nine plants.
Following Heim (1990), Elbourne solves this problem by increasing the com-
plexity of the semantic system. Determiners like every are no longer simple
quantifiers over individuals; rather, they operate over individuals, minimal situ-
ations containing these individuals (for the restriction), and extensions of these
minimal situations (for the nuclear scope). For instance, a simplified version of
Elbourne’s rendering of (117) is given in (118):

(118) For every x and every minimal situation s such that x bought a sage
plant in s, there is a situation s′ extending s such that x bought eight
other sage plants in s′ along with the (unique) sage plant in s.

Crucially, while the nuclear scope is evaluated with respect to an extended
situation s′, the pronoun it itself must be evaluated in the minimal situation s
satisfying the restriction.

This solution is not quite enough to solve another class of counterexamples,
dubbed The Problem of Indistinguishable Participants by Heim (1990) and at-
tributed therein to Hans Kamp, illustrated in (119):

(119) If a bishop meets another bishop on the road, he blesses him.

The simple “minimal situation restriction” move mentioned above will not suf-
fice here, since the restriction itself mentions two bishops without significantly
distinguishing them. Instead, therefore, Elbourne multiplies the number of sit-
uations involved (up to seven for (119)).14,15 He then “distinguishes” one of the
bishops by referencing the number of situations they appear in overall, but this
procedure is not precisely formalized.16

14Here are his truth conditions for (119):

(i) λs5 .
for every minimal s6≤s5 such that ∃ an x and s1 such that:

s1 is a min. situation s.t. s1≤s6 and x is a bishop in s1, s.t. ∃ an s2 ≤ s6 s.t.:
s2 is a min. situation s.t. s1≤s2 and there is a y and s3 s.t.:

s3 is a min. situation s.t. s3≤s2 and y is a bishop in s3, s.t. ∃ an
s4≤s2 s.t.:

s4 is a min. situation s.t. s3≤s4 and x meets y in s4;

there is an s7≤s5 such that:

s7 is a min. situation s.t. s6≤s7 and the bishop in s7 “distinguished” by
being in fewer situations overall blesses (in s7) the other bishop in s7.

15In later work, Elbourne (2016) revisits this analysis in view of a separate proposal involving
definite descriptions. He essentially maintains the same analysis, but is forced to make the
truth conditions even slightly more complex in order to accommodate the new proposal.

16Elbourne also points out that more symmetrical cases like (i) sound odd, which he claims

36

One final issue involving the uniqueness of E-type accounts, also described
recently in Mandelkern and Rothschild (2020) and Lewis (2012), involves simple
cross-sentential cases:

(120) A girl was eating lunch in a crowded cafeteria, surrounded by a sea of
other girls. She got up and left, leaving a single purple ribbon behind.

Here, there is no unique referent fitting a description as required by the use of
she in the second sentence: the girl, the girl eating lunch surrounded by other
girls, etc., all describe multiple individuals. Presumably, an E-type account
could make the same move as Elbourne, positing a raft of minimal situations
generated by the first sentence and referred back to by the second sentence, but
we have not seen this sort of analysis mooted for cross-sentental cases like this.

4.2 Dynamic Approach

The dynamic approach essentially side-steps all the issues above by allowing in-
definites to extend their scope beyond the traditional limits: matrix-level indef-
inites effectively scope at the discourse level, allowing unlimited cross-sentential
anaphora without requiring uniqueness or unformalized salient descriptions in
the context. Apparently indistinguishable participants can therefore be distin-
guished using the usual methods of indexing and binding.

This approach comes with its own complexities, though, including a shift
from propositional denotations to relational ones, pairing input and output
states. (See below for discussion of the non-determinism inherent to such rela-
tional meanings.) And like the E-type approach, the complexities of the dynamic
approach multiply as it attempts to cover more empirical ground.

The early dynamic systems used relations over input and output states con-
sisting of single assignments (Groenendijk and Stokhof 1991), or semi-equivalently
used functions over states comprising sets of assignments (Kamp 1981; Heim
1982). For instance, as shown above, under Dynamic Predicate Logic (Groe-
nendijk and Stokhof 1991), a simple sentence like (121a), with no pronouns,
takes any single assignment as its input; and its possible output states include
all assignments g such that g(f) is a farmer and g(d) is a donkey that g(f)
owns. A simple sentence like (121b), with pronouns but no indefinites, restricts
its input assignments g to those where g(f) beats g(d); and its output state is
identical to its input.

(121) a. Af farmer owns ad donkey. b. Hef beats itd.

as a prediction of his account. However, there seems to be more going on here, since a case
like (ii) also sounds odd, even though the participants are distinguishable (see also Barker and
Shan 2008; Elbourne 2009):

(i) #If a bishop and a bishop meet on the road, he blesses him.

(ii) #If a dog and a cat fight in the road, it bites it.

37

But these early systems did not handle plural phenomena like quantifica-
tional subordination, and they even had trouble with generalized quantifiers
like most. For instance, every in DPL asserts that every output state of its
restriction is a possible input state for its nuclear scope. For (122), this requires
that every assignment g pairing a farmer g(f) with a donkey g(d) that g(f) owns
be such that g(f) beats g(d). But a simple extension of this analysis to (123)
does not work. Sentence (123) does not mean that most pairings of a farmer
with a donkey that the farmer owns are such that the farmer beats the donkey;
if it did, a single malicious farmer who owns and beats a hundred donkeys could
verify the sentence even if fifty gentle farmers each owned a single donkey and
treated it well. Kadmon (1987) dubbed this The Proportion Problem.

(122) Everyf farmer who owns ad donkey beats itd.

(123) Mostf farmers who own ad donkey beat itd.

To solve both these issues, van den Berg (1996) moves from relations over
states comprising single assignments to states comprising sets of assignments.
This complexification of data structures requires a commensurate complexifica-
tion of interpretative rules, and of the logical formulas assigned to sentences. For
instance, random assignment in a van den Berg-style system requires checking
both that every assignment in the input state relates to at least one assignment
in the output state and that every assignment in the output state relates to
at least one assignment in the input state. For each input state, the set of
outputs consists of all states that pass the check. With complex context states
in hand, constructing an account of generalized quantifiers and quantificational
subordination itself requires additional complexities: a dummy individual ⋆ to
simulate missing values; a special “structured inclusion” operator relating input
states to subsets thereof based on precise rules involving dummy individuals;
and special maximality and distributive operators also made complex by the
need to accommodate dummy individuals. The full formal details for such a
system, including definitions for around a dozen special operators, can be found
in Brasoveanu (2007) starting on pp. 195–199 and finishing on pp. 255–260.

The empirical issues with dynamic accounts mostly involve technical prob-
lems in the strategies required to extend the scope of indefinites. For instance,
in order to capture cases like (124a) (similar to (49) above), dynamic accounts
usually cap indefinite scope within negation. And yet, as (124b) (similar to
(48)) shows, indefinites sometimes do scope out of (especially double) negation:

(124) a. John doesn’t own a car. #It’s (just) in the shop.
b. It’s not like John doesn’t own a car. It’s (just) in the shop.

Another case that dynamic approaches cannot handle easily is paycheck pro-
nouns (Karttunen 1969). As mentioned above, the dynamic approach essentially
involves extended scope binding from an antecedent to a bound pronoun. How-
ever in cases like (125), the apparent antecedent (her paycheck) does not denote
the same individual as the later pronoun it ; no simple binding structure could
achieve the correct reading.

38

(125) The employee who saved her paycheck was wiser than the one who
spent it.

Finally, plural dynamic systems following van den Berg suffer from an empirical
deficit involving reference in the nuclear scope to a summation plural whose
antecedent is in the restriction of the same quantifier (Nouwen 2003b). For
instance, them in (126) may refer to all the donated toys, summing over the
people who donated them within a quantification over these same people. In
order to solve this problem, Nouwen (2003b) increases the complexity again,
introducing assignments whose values are stacks of individuals rather than single
individuals or sets of individuals.

(126) Everyone who donated a toy helped wrap them all for the charity drive.

4.3 DUAL

Keshet (2018) presents Dynamic Update Anaphora Logic, a dynamic system
that takes a very different approach from van den Berg-style systems, such as
Brasoveanu (2007). Essentially, DUAL is a version of DPL with two additions:
labels for subformulas and complex terms collecting all values for a term in such a
stored subformula. These latter serve the same purpose as the summation terms
of FOL-PLUS, giving translations like the following for quantified sentences:

(127) Mostd dogsD barkB

⇝ (D : ∃ddog(d))∧ (B : D∧bark(d)) ∧most(D.d,B.d)
⇝ (D : ∃ddog(d))∧ (B : ∃ddog(d)∧bark(d))∧most(D.d,B.d)

The clauses prefixed with a capital letter variable are vacuously true; their only
contribution is to store a full DPL denotation in the capital letter variable. This
denotation may be retrieved by later use of the same variable, either as a clause
on its own, or in complex terms. The two complex terms ¬D.d¬ and ¬B.d ¬ are
equivalent to the summation terms ¬Σd DT ¬ and ¬Σd BT¬ in FOL-PLUS, returning
all dogs and all dogs that bark, respectively.

We very much view FOL-PLUS as an intellectual successor to DUAL, espe-
cially in its use of labeled subformulas, the main innovation of DUAL (equiva-
lents to complex/summation terms were introduce by Kamp and Reyle (1993)).
In fact there are very few differences in empirical coverage when you compare
FOL-PLUS to DUAL, although we point out one:

Plurals Brasoveanu (2008) argues at length for two kinds of plurals in natural
language, roughly corresponding to the denotations of plural indefinites versus
plural summation pronouns. DUAL only includes this latter type of plural,
since it follows DPL in only allowing singular individuals as the denotations of
(lowercase) variables. All plurals in DUAL are constructed via complex terms,
even those introduced by plural indefinites (see Keshet 2018, p.290 and footnotes
12 and 17). And since complex terms in DUAL are necessarily maximal, issues

39

arise similar to the E-type treatment of cross-sentential anaphora. Consider the
following plural version of (120) above:

(128) a. Twog girlsG [were eating lunch in a crowded cafeteria]EG, sur-
rounded by a sea of other girls.

b. TheyE.g got up and left.

The label E in (128) will denote the formula translating (roughly) “ag girl was
eating lunch in a crowded cafeteria,” and thus ¬E.g ¬ will necessarily denote all
girls eating in the cafeteria. Two problems arise, therefore: first, (128a) will
come out as false, since ¬E.g ¬ denotes more than two girls. Next, the pronoun
theyE.g denotes every girl there, rather than the two mentioned in the first sen-
tence.

Although the empirical differences between DUAL and FOL-PLUS are mi-
nor, we strongly believe that empirical coverage never lives in a vacuum. And
therefore we outline the main contributions of this paper above DUAL and the
other systems in the last subsection.

4.4 Key Contributions

This paper introduced a new approach to improper scope phenomena, one that
can be viewed as a synthesis of E-type and dynamic approaches, combining the
strengths of each. The centerpiece of the approach is a new logic, FOL-PLUS,
which is a simple extension of static, first order logic. While many of the ideas
presented here have analogs in prior work, we conclude the paper with what we
view as the contributions of FOL-PLUS.

Formal Simplicity FOL-PLUS is a much simpler system overall than any
other with comparable empirical coverage, as argued extensively above. But
this simplicity can be cashed out in several ways:

• FOL-PLUS is static.
Given an assignment g, a FOL-PLUS formula denotes a simple truth value,
just as in FOL itself. We have shown that the key contributions of dynamic
logic, even plural dynamic logic, can be replicated in a static system, which
itself we take as a significant contribution. Furthermore, FOL-PLUS is
not a complex “statification” converting a dynamic logic into a static one;
instead, we present a conceptually simple static logic, thereby providing
insight into the properties that underlie dynamic systems.

The simplicity of a static logic over a dynamic one may seem apparent,
but it also reverberates throughout the system. For instance, conjunc-
tion in FOL-PLUS is the familiar two-place truth function of FOL, while
dynamic logics require a non-commutative operation equivalent to rela-
tion composition. And every separate natural language translation into
dynamic logic must also take dynamic effects into account.

40

• FOL-PLUS operates over a single assignment.
In general, the semantic value JϕK that a dynamic logic assigns to a formula
is a relation between states, where the complexity of the state depends on
the choice of logic. In a singular logic like Dynamic Predicate Logic (Groe-
nendijk and Stokhof 1991), states are single assignments, hence semantic
values are relations between assignments. In plural logics following van den
Berg (1996), states are sets of assignments, typically conceptualized as ta-
bles in which assignments correspond to rows and variables correspond to
columns. Thus a semantic value (for a formula) is a relation between ta-
bles. In a static logic such as FOL, a semantic value is a function from an
assignment to a truth value, which is to say, a 1-place relation over assign-
ments (that is, a set of assignments). Thus we have at least three orders
of magnitude of state complexity: 1-place relations over assignments
(FOL), 2-place relations over assignments (DPL, DUAL17), and 2-place
relations over tables (plural dynamic logics). FOL-PLUS belongs to the
simplest class, with FOL.

• FOL-PLUS involves no non-determinism.
The relations defined by dynamic logics are conceived as relations between
inputs and outputs of a program. A program that defines a general (non-
function) relation is non-deterministic: a given input does not determine
a unique output. Such programs are intrinsically more difficult to reason
about than deterministic programs—indeed, to the best of our knowl-
edge, every widely-used practical programming language is deterministic.
Nondeterministic programs can be converted to equivalent deterministic
programs by increasing the state complexity: the set of outputs produced
by a given input is uniquely defined. (This technique is fundamental in
the treatment of finite-state automata, for example.) Thus what we may
call the deterministic state complexity of standard dynamic logics is
actually greater than the nondeterministic state complexity discussed in
the previous paragraph. For DPL, the equivalent deterministic program
defines a 2-place relation between tables, and for dynamic plural logics,
it defines a 2-place relation between sets of tables. Non-determinism is
not an issue for FOL or FOL-PLUS; their state complexity remains at
1-place relations over assignments. Thus the true increase in state com-
plexity from static to dynamic logics is even greater than stated earlier.
FOL-PLUS is the only plural logic we know of whose deterministic state
complexity is that of a 1-place relation over assignments.

Beyond the inherent unwieldiness of complex states, this too is a feature
that reverberates throughout a semantic system. For instance, existential
closure in a van den Berg system is far from straightforward, requiring
pointwise comparison of the individual component assignments in the in-
put and output information states.

17DUAL also adds an additional assignment parameter for tracking uppercase variables. Its
state complexity is therefore technically a 2-place relation over pairs of assignments.

41

• FOL-PLUS does not rely on special operators.
Our full array of empirical results is obtainable using only the formal sys-
tem described in Figure 2 above and standard predicate definitions. As
a comparison, in addition to analogs of FOL structures such as atomic
formulas, conjunction, and so forth, Brasoveanu (2007) introduces a sig-
nificant number of additional operators whose meanings are not describ-
able in terms of standard predicates: three maximization operators, four
distribution operators, two special determiner denotations for generalized
quantifiers, a ¬unique ¬ operator for singular items, and more.

Discourse Blocks FOL-PLUS introduces discourse blocks as the locus of
three seemingly unrelated operations: the scope of indefinites, summation and
existential closure, and formula-label anaphora. DUAL has the beginnings of
a theory of discourse blocks, namely the labeled subformulas in a DUAL for-
mula. However, DUAL does not capture the connection between such labeled
subformulas on the one hand and variable scope and closure operators on the
other.

Translation Simplicity FOL-PLUS is designed to map neatly onto natural
language, allowing (for instance) quantifiers to denote simple two-place relations
over (plural) individuals. Although Keshet (2018) does not give a full translation
procedure for DUAL, he does point out that such a translation would perforce
require rather complex, higher order denotations for quantificational determin-
ers, juggling two uppercase indices and one lowercase index (see Keshet 2018,
p. 282). A translation along these lines is illustrated in (129):

(129) [everyxR,S β γ] ⇝ (R : ∃xβ′) ∧ (S : R ∧ γ′) ∧ every(R.x, S.x)

And while some other plural logics provide translations from natural language
(e.g. Brasoveanu 2007), many do not (e.g. Keshet 2018). The mapping we
provide is a very simple extension of the familiar system due to Heim and
Kratzer (1998).

A Lambda Notation

Adding the lambda operator in a fully general way entails significant complexi-
ties, but we can sidestep those complexities by making two assumptions:

(130) a. The output of translation is converted to standard form (see 1.4.1),
before applying β-reduction.

b. Variables bound by λ are always fresh variables, occurring nowhere
else in the discourse.

Note that lambda is not a closure operator and does not close blocks. By lambda
application we mean an expression of form (λαϕ)(ψ) where ϕ is the body and ψ

42

is the argument. Any free variables in the body or the argument belong to the
block that contains the lambda application.

(130a) guarantees that all bracketed variables are immediately bound, and,
in particular, that there are no free bracketed variables in a lambda application.
As for bracketed variables that are free in the value of a formula label, recall
that:

(131) Formula retrieval and storage are only permitted in expressions of form
CYXϕ, where C is a closure operator.

This guarantees that any bracketed variables in X are immediately bound by
C.

(130b) is partly a syntactic constraint (rule PA takes the variable for λ from
a syntactic index) and partly a semantic constraint (rule PM).18 Requiring all
variables to be fresh obviates the need for α-conversion. Incidentally, in our
examples, we use z with optional numeric subscripts to indicate that a variable
is intended to be “fresh.”

Given (130), we may simplify the output of translation by (1) conversion
to standard form and (2) β-reduction (without α-conversion). The resulting
expression will be in standard form and will contain no lambdas.

References

C. Barker and C. Shan. Donkey anaphora is in-scope binding. Semantics and
Pragmatics, 1(1):1–46, 2008.

J. Barwise and R. Cooper. Generalized quantifiers and natural language. Lin-
guistics and Philosophy, 4(2):159–219, 1981.

Jon Barwise. Noun phrases, generalized quantifiers and anaphora. In General-
ized quantifiers, pages 1–29. Springer, 1987.

George S. Boolos and Richard C. Jeffrey. Computability and Logic, 2nd edition.
Cambridge University Press, 1980.

Adrian Brasoveanu. Structured nominal and modal reference. PhD thesis, Rut-
gers University New Brunswick, NJ, 2007.

Adrian Brasoveanu. Donkey pluralities: plural information states versus non-
atomic individuals. Linguistics and philosophy, 31(2):129–209, 2008.

Adrian Brasoveanu and Donka F Farkas. How indefinites choose their scope.
Linguistics and philosophy, 34(1):1–55, 2011.

E.F. Codd. A relational model for large shared data banks. Communications
of the ACM, 13(6):377–387, 1970.

18The syntactic constraint is satisfied as a consequence of usual assumptions on distinctness
of indices, and the semantic assumption is unremarkable.

43

Jan van Eijck. Axiomatising dynamic logics for anaphora. Journal of Language
and Computation, 1(1):103–126, 1999.

Paul Elbourne. Situations and Individuals. Cambridge: The MIT Press, 2005.
ISBN 0262050803.

Paul Elbourne. Bishop sentences and donkey cataphora: A response to
Barker and Shan. Semantics and Pragmatics, 2(1):1–7, January 2009. doi:
10.3765/sp.2.1.

Paul Elbourne. Incomplete descriptions and indistinguishable participants. Nat-
ural Language Semantics, 24(1):1–43, 2016.

Gareth Evans. Pronouns, quantifiers, and relative clauses (i). Canadian Journal
of Philosophy, 7(3):467–536, 1977. ISSN 00455091.

Gareth Evans. Pronouns. Linguistic Inquiry, 11(2):337–362, 1980.

J.D. Fodor and I.A. Sag. Referential and quantificational indefinites. Linguistics
and Philosophy, 5(3):355–398, 1982.

Gerald Gazdar. A cross-categorial semantics for coordination. Linguistics and
Philosophy, 3(3):407–409, 1980.

P.T. Geach. Reference and generality: an examination of some medieval and
modern theories. Ithaca, NY: Cornell University Press, 1962.

J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics and phi-
losophy, 14(1):39–100, 1991.

I. Heim. Meaning, Use and Interpretation of Language, meaning, use and in-
terpretation of language File change semantics and the familiarity theory of
definiteness, pages 223–248. De Gruyter, Berlin, 1983. ISBN 0470758333.

I. Heim. E-type pronouns and donkey anaphora. Linguistics and Philosophy,
13(2):137–177, 1990.

Irene Heim. The Semantics of Definite and Indefinite Noun Phrases. PhD
thesis, Univeristy of Massachusetts, Amherst, 1982.

Irene Heim and Angelika Kratzer. Semantics in Generative Grammar. Oxford:
Blackwell, 1998.

Pauline Jacobson. Paycheck pronouns, bach-peters sentences, and variable-free
semantics. Natural Language Semantics, 8(2):77–155, 2000. ISSN 0925-854x.

N. Kadmon. On unique and non-unique reference and asymmetric quantifica-
tion. PhD thesis, University of Massachusetts, 1987.

H. Kamp. A theory of truth and semantic representation. Formal Semantics,
pages 189–222, 1981.

44

H. Kamp and U. Reyle. From discourse to logic: Introduction to modeltheoretic
semantics of natural language, formal logic and discourse representation the-
ory, volume 42. Kluwer Academic Dordrecht,, The Netherlands, 1993. ISBN
0792310276.

Lauri Karttunen. Pronouns and variables. In Fifth Regional Meeting of the
Chicago Linguistic Society, pages 108–115, 1969.

Edward L. Keenan and Leonard M. Faltz. Logical types for natural language.
UCLA Occasional Papers in Linguistics, 3, 1978.

Ezra Keshet. Dynamic update anaphora logic: A simple analysis of complex
anaphora. Journal of Semantics, 35(2):263–303, 2018.

Angelika Kratzer and Junko Shimoyama. Indeterminate pronouns: The view
from Japanese. In Yukio Otsu, editor, The Proceedings of the Third Tokyo
Conference on Psycholinguistics, pages 1–25. Tokyo: Hituzi Syobo, 2002.

D. Lewis. Formal semantics of natural language, chapter Adverbs of quantifi-
cation, pages 3–15. Cambridge Univ. Press, 1975.

Karen S Lewis. Discourse dynamics, pragmatics, and indefinites. Philosophical
Studies, 158(2):313–342, 2012.

Matthew Mandelkern and Daniel Rothschild. Definiteness projection. Natural
Language Semantics, 28(2):77–109, 2020.

R. Montague. English as a formal language. Linguaggi nella Societa e nella
Tecnica, pages 189–223, 1970.

Reinhard Muskens. Combining montague semantics and discourse representa-
tion. Linguistics and Philosophy, 19(2):143–186, 1996.

Rick Nouwen. Complement anaphora and interpretation. Journal of Semantics,
20(1):73–113, 2003a.

Rick Nouwen. E-type pronouns: Congressmen, sheep, and paychecks. The Wiley
Blackwell Companion to Semantics, pages 1–28, 2020.

Rick Nouwen, Adrian Brasoveanu, Jan van Eijck, and Albert Visser. Dynamic
Semantics. In Edward N. Zalta and Uri Nodelman, editors, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
Fall 2022 edition, 2022.

Rick Willem Frans Nouwen. Plural pronominal anaphora in context: Dynamic
aspects of quantification. PhD thesis, 2003b.

Tanya Reinhart. Quantifier scope: How labor is divided between qr and choice
functions. Linguistics and philosophy, pages 335–397, 1997.

45

M. Rooth and B. Partee. Generalized Conjunction and Type Ambiguity. Mean-
ing, Use, and Interpretation of Language, de Gruyter, Berlin, pages 361–383,
1983.

Mats Rooth. A theory of focus interpretation. Natural Language Semantics, 1
(1):75–116, 1992.

Lenhart K Schubert and Francis Jeffry Pelletier. Generically speaking, or, using
discourse representation theory to interpret generics. In Properties, types and
meaning, pages 193–268. Springer, 1989.

R. Schwarzschild. Singleton Indefinites. Journal of Semantics, 19(3):289–314,
2002.

Roger Schwarzschild. GIVENness, AvoidF and other constraints on the place-
ment of accent. Natural Language Semantics, 7(2):141–177, 1999. ISSN 0925-
854x.

Peter Sells. Restrictive and non-restrictive modification, volume 28. Center for
the Study of Language and Information, Stanford University, 1985.

Martin H van den Berg. Some aspects of the internal structure of discourse.
The dynamics of nominal anaphora. PhD thesis, Amsterdam ILLC, 1996.

J.D. Ullman. Principles of Database and Knowledge-Base Systems, Volume 1.
Computer Science Press, Rockville, Maryland, 1998.

Yoad Winter. Choice functions and the scopal semantics of indefinites. Linguis-
tics and philosophy, pages 399–467, 1997.

46

