Multi-threading Semantics

Steven Abney & Ezra Keshet

University of Michigan

2021

Download: https://tinyurl.com/glow44threads

Steven Abney & Ezra Keshet

With two small extensions to Heim (1982, Chp 2), we can derive a fully functional plural semantics:

- 1. Indefinites are variables, bound within a thread defined by quantifiers, negation, or the top-level discourse (Heim, 1982).
- 2. NEW: Such threads may be stored and used later just like predicates.
- 3. NEW: Plurals are also formed by collecting values from stored threads.

The denotation of an open formula

 Following Heim (1982), we take pronouns and indefinites both to denote variables.

(1) A^f friend of hers_w smiled. $\rightsquigarrow fr(f, w) \land sm(f)$

An open formula is true under an assignment of values to its variables. We will abbreviate uses & mentions of variables:

(2)
$$\langle f, w \rangle$$
 for $\{("f"=f), ("w"=w)\}$

Thinking of an assignment as a kind of tuple, the set of assignments that satisfy an open formula constitutes a kind of relation:

$$(3) \quad \|fr(f,w) \wedge sm(f)\| = \{\langle f,w \rangle : fr(f,w) \wedge sm(f)\}\$$

Combining relations

The relational equivalent of conjunction is natural join:

$$(4) \quad \|P \wedge Q\| = \|P\| \bowtie \|Q\|$$

Relations represent discourse state.

(5) $||S_1 S_2|| = ||S_1|| \bowtie ||S_2||$

A discourse state counts as true just in case it is nonempty.

Simple Thread

(6) A^w woman_w waved to a^f friend_f of hers_w
(7) He_f smiled.

$$\begin{aligned} \|(6)\| &= \|wm(w) \wedge fr(f, w) \wedge wv(w, f)\| \\ &= \{\langle w, f \rangle : wm(w) \wedge fr(f, w) \wedge wv(w, f)\} \\ \|(7)\| &= \{\langle f \rangle : sm(f)\} \\ \|(6)(7)\| &= \|(6)\| \bowtie \|(7)\| \\ &= \{\langle w, f \rangle : wm(w) \wedge fr(f, w) \wedge wv(w, f) \wedge sm(f)\} \end{aligned}$$

- When converting a relation to a truth value, some variables may escape closure:
 - (8) It's not true that a^{f} friend of hers_w smiled. $\rightsquigarrow \{\langle \mathbf{f} \rangle : fr(\mathbf{f}, \mathbf{w}) \land sm(\mathbf{f})\} = \emptyset$
 - (9) Every^f friend of hers_w smiled. $\rightsquigarrow \{\mathbf{f} : fr(\mathbf{f}, \mathbf{w})\} = \{\mathbf{f} : fr(\mathbf{f}, \mathbf{w}) \land sm(\mathbf{f})\}$

Add some curry

We can "curry" a relation to factor it into a contextual assignment and a subrelation with lower arity (including possibly arity 0):

(10) a.
$$R := \{ \langle w, f \rangle : fr(f, w) \land sm(f) \}$$

b. $R_w = \{ \langle f \rangle : fr(f, w) \land sm(f) \}$
c. $R_{wf} = \{ \langle \rangle : fr(f, w) \land sm(f) \}$

Any of them can be closed. Subrelation + closure = application:

(11)
$$\begin{array}{cccc} R(w,f) &\leftrightarrow & R_{wf} \neq \varnothing &\leftrightarrow & fr(f,w) \wedge sm(f) \\ R(w) &\leftrightarrow & R_w \neq \varnothing &\leftrightarrow & \exists f[fr(f,w) \wedge sm(f)] \\ R() &\leftrightarrow & R \neq \varnothing &\leftrightarrow & \exists f \exists w[fr(f,w) \wedge sm(f)] \end{array}$$

Syntactically bound and free

Meanings are open formulas, hence all variables are free. But some are syntactically bound: written as superscripts.

(12) a^{f} friend of hers_w smiled

Which variables are curried out: the syntactically free ones. For example in negation (cf. Heim's selective existential closure):

(13) a. not
$$[a^f \text{ friend of hers}_w \text{ smiled}]$$

b. $\|fr(f, w) \wedge sm(f)\|_w = \emptyset$
 $\leftrightarrow \neg \exists f[fr(f, w) \wedge sm(f)]$

Set abstraction

Set abstraction. Extracts a column of the relation.

(14)
$$R.x = \bigcup_{g \in R} g(x)$$

Also here, curry out free variables:

(15) every^f [NP
$$t^f$$
 friend of hers_w] smilled
a. $||NP||_w f = \{f : ||NP||_w(f)\}$
b. $= \{f : fr(f, w)\}$

Named relations

Formulas may be named and used later as propositional variables:

(16) Most^f [fr's of hers_w]^F [
$$e_F$$
 gave her_w a^p present]^G.
a. $F = \{\langle f, w \rangle : fr(f, w)\}$
b. $G = \{\langle f, w, p \rangle : F(f, w) \land pr(p) \land gv(f, w, p)\}$

Plural Values

(16) $\operatorname{Most}^{f} [\operatorname{fr's} \operatorname{of} \operatorname{hers}_{w}]^{F} [t_{F_{w}} \text{ gave } \operatorname{her}_{w} \operatorname{a}^{p} \operatorname{present}]^{G}.$

- Collecting values for particular variables in relations gives us all manner of useful plurals:
 - (17) a. F_w.f 'w's friends'
 b. G_w.f 'w's friends who gave w a present'
 c. G_w.p 'presents w's friends gave w'

These can define generalized quantifiers and discourse plurals:

(18) a. (16)
$$\rightsquigarrow MOST(F_w.f, G_w.f)$$

b. They_{Gw.p} are on that table $\rightsquigarrow ot(G_w.p)$

Detail

$$\alpha^A \rightsquigarrow \frac{A_F}{A = \|\alpha\|}$$

where F are the syntactically free variables of α

Note: the fraction indicates $\frac{value}{presupposition}$

Download: https://tinyurl.com/glow44threads

Steven Abney & Ezra Keshet

Quantifier Example

(19) Every^f [NP friend_f of hers_w]^F [VP e_F smiled]^S

$$NP \iff \frac{F_{w}}{F = \{\langle f, w \rangle : fr(f, w)\}}$$

$$VP \iff \frac{S_{w}}{S = \{\langle f, w \rangle : F(f, w) \land sm(f)\}}$$

$$(19) \iff \frac{EVERY(F_{w}.f, S_{w}.f)}{F = \{\langle f, w \rangle : fr(f, w)\}}$$

$$S = \{\langle f, w \rangle : fr(f, w) \land sm(f)\}$$

Donkey Anaphora / Quantificational Subordination

(20) Everyone[×] $[_{NP}$ who owns an^{*u*} umbrella $]^O$ $[_{VP}$ e_O brought it_{*u*} to school $]^S$

(21) Most^x e_S [VP will forget it at the end of the day]^F

$$(20) \rightsquigarrow \frac{\text{EVERY}(O.x, S.x)}{O = \{\langle x, u \rangle : um(u) \land ow(x, u)\}}$$
$$S = \{\langle x, u \rangle : O(x, u) \land br(x, u)\}$$
$$(21) \rightsquigarrow \frac{\text{MOST}(S.x, F.x)}{F = \{\langle x, u \rangle : S(x, u) \land ft(x, u)\}}$$

Strong Donkey Pronoun

(22) Everyone[×] $[NP \text{ who owns an}^u \text{ umbrella}]^O [VP e_O \text{ left it}_u \text{ at home}]^H$

(22)
$$\rightsquigarrow \frac{\text{EVERY}(O.x, H.x)}{O = \{\langle x, u \rangle : um(u) \land ow(x, u)\}}$$

 $H = \{\langle x, u \rangle : O(x, u) \land lf(x, O_x.u)\}$

O_x.u = {u : O(x, u)} with x free, i.e., the set containing all of x's umbrellas.

x is bound one level up, in the definition of H.

Download: https://tinyurl.com/glow44threads

Steven Abney & Ezra Keshet

Paycheck Pronoun

(23) a. Jasmine^j
$$\lambda_x$$
 spent [DP her^p_x paycheck]^P
b. Marcus^m λ_x deposited it_{Px}.p

$$DP \quad \rightsquigarrow \frac{P_{x}.p}{P = \{\langle p, x \rangle : pc(p, x)\}}$$

$$(23) \quad \rightsquigarrow \frac{\|sp(x, P_{x}.p)\|(``x''=j) \land \|dp(x, P_{x}.p)\|(``x''=m)}{P = \{\langle p, x \rangle : pc(p, x)\}}$$

Internal Discourse Plural

(24) Most^c $[_{NP}$ North Atlantic countries $]^{N}$ $[_{VP} e_{N}$ defend each other $_{D} c_{1}^{D}$

(24)
$$\rightsquigarrow \frac{\text{MOST}(N.c, D.c)}{N = \{\langle c \rangle : na(c)\}}$$

$$D = \{\langle c \rangle : N(c) \land df(c, D.c)\}$$

- Each discourses presupposes there is an assignment G valuing uppercase relation variables as specified in the discourse.
- For instance, in (24), this G must be such that the relation in G(D) is $\{\langle c \rangle : G(N)(c) \land df(c, G(D).c)\}$.
- If there's more than one such G, maximal values seem to be used (e.g., G(D) will contain all NATO countries).