CLD: Software for Computational Language
Description

Steven Abney

of 2019 Aug 3

1 Motivation

I would like to describe an application for computational language description,
acronymically named CLD. The ultimate motivation for CLD derives from an
envisioned paradigm of linguistic research, one that accepts the Chomskyan
postulate that an account of the human capacity for language boils down to
the question of unsupervised language learning, but approaches the question
from a computational perspective, which is to say, from the perspective of data
science and machine learning. Within this paradigm, the question of how a
language can be learned in principle is considered to be prior to the psychological
question of the properties and time course of human language acquisition, and
an answer is considered to be unsatisfactory unless it is explicit enough to be
implemented and tested on large, systematic data collections. Bloomfield hinted
at something along these lines when he wrote that “we shall have to return to
the problem of general grammar and to explain [the] similarities and divergences
[among languages], but this study, when it comes, will be not speculative but
inductive” [5]. Accordingly, I call the paradigm inductive general grammar.

The core of a theory of inductive general grammar is a learning algorithm.
Given data from any natural language, it outputs a language description that is
correct, which from a computational perspective means that it defines a relation
between sentences S and semantic representations p (sounds and meanings) that
aligns with human judgments about expression and interpretation: whether S
can be interpreted as p, or, conversely, whether p can be expressed as S.

A typical machine-learning experiment involves comparing the performance
of a few learners on a given dataset. That is not sufficient for our purposes. We
are not much interested in how well the learner does on a single language; what
we really wish to know is how well it does on all possible human languages.
To estimate that, we require a sufficiently large and sufficiently representative
sample of languages, and for each, a dataset that is sufficiently large to learn
the entire language. In short, we require a universal corpus of the world’s
languages [1].

In recent years, the computational-linguistic community has made progress
toward the development of a universal corpus. The most significant resource is a



DRAFT 2

set of treebanks that uses a common annotation scheme known as the Universal
Dependencies (UD) framework [6]. The UD treebanks currently encompass
some 70 languages. That is an order of magnitude more than were available
a decade ago, but even so, it represents only about one percent of the world’s
languages, and endangered languages are heavily undersampled, particularly
when one limits attention to the larger treebanks.

It has proven difficult to obtain suitable data for the remaining 99% of the
world’s languages, for which I use the term low-resource languages as a short-
hand. But there are reasons to doubt that the problem is one of making audio
recordings. Bird has shown that relatively large bodies of audio recordings can
be collected in brief time periods [2, 3, 4]. Anecdotally, two Ojibwe tribes that
I have interacted with have made audio-video recordings of immersion sessions
for educational purposes, and as a result have accumulated thousands of hours
of language data over the years. Such observations suggest that the culprit is
not any difficulty in making primary recordings, but rather the low through-
put of the standard documentary pipeline that leads from primary recordings
to finished datasets. The standard tools used in documentary linguistics are
sophisticated but place high demands on users; they typically emphasize fi-
nesse in annotation over streamlining and ease of use. There are few tools that
emphasize speed and simplicity over sophistication of annotation, and CLD is
designed to fill that gap. In particular, I hope to enable speakers of the language
to contribute directly to the effort of documenting their language, and thereby
to increase the size and diversity of a universal corpus.

The question arises immediately what might motivate a language speaker
to contribute to a universal linguistic corpus. We cannot reasonably expect
speakers of low-resource languages to be motivated by the rather esoteric aims
of academic linguistic research. But speaker communities—particularly in the
cases of languages in which transmission to the next generation is faltering—
often do have a strong interest in assembling linguistic data for purposes of
language instruction and preservation.

That provides the central design goal of the CLD application: to support a
mutually beneficial collaboration between computational linguistics and speaker
communities. The application is designed in equal parts as a tool that assists in
human language learning, and as a platform for research in machine language
learning. If the collaboration brings benefit to the community, it is more likely
that they will be willing to release at least some vetted portion of the data for
research use, and even in the absence of released data, computational-linguistic
goals are served by incorporating language-learning algorithms and their eval-
uation into the platform. One may view the latter approach as bringing the
algorithms to the data rather than the data to the algorithms.

Fortunately, solutions to some of the most challenging computational prob-
lems would be of genuine and significant benefit for language instruction. Auto-
matic audio transcription is a key example, and automated analysis and trans-
lation are also of considerable utility. The first version of CLD does not in-
corporate solutions to the automated learning problems, but it does provide a
platform for integrating them into language instruction.



DRAFT 3

Among speaker communities, immersion learning appears to be widely pop-
ular. CLD does not provide a traditional system-initiative instructional system
like Duolingo or Rosetta Stone; rather, it particularly aims to support self-study
that complements immersion learning.

2 Content

2.1 Simple texts

CLD is organized around texts, which mediate between audio recordings and
the lexicon. The basic item is a column of tokenized text. Structurally, a text
column is a list of sentences, optionally aligned with a translation that is a list
of the same length. The translation can be viewed as a second column, so that
the container, called a simple text, has the form of an array: its first column is
the original text, the second column is the translation, and each row represents
a sentence. A simple text is completely analogous to traditional facing-page
format for text and translation.

Sentence is to be understood loosely: translation unit is a more accurate
term. Nothing hinges on its size or grammatical status, only on it being a
suitable unit for translation.

A sentence, in turn, is a list of word tokens. Only word tokens matter; punc-
tuation marks are not treated as separate tokens, but are attached to adjacent
words. That is, each token is optionally associated with leading and trailing
punctuation characters. This approach is more intuitive for non-experts and
simplifies the correspondence between tokens and lexicon.

Intermediate between text and lexicon is interlinear glossed text (IGT). An
IGT view shows a single sentence, partitioned into glossed words corresponding
to individual tokens.

2.2 Lexicon

Central to CLD is a tight integration between texts and lexicon. The character
sequence making up a word token is called a form. The class of forms is very
inclusive; it includes not only citation forms but also inflected forms, proper
nouns, dialectal variants, misspellings, and so on. Anything that appears in a
text is a form, as is any element that a user introduces when analyzing a text,
such as bound morphemes or multi-word units.

The lexicon is a table whose keys are forms. This, again, is a much more
inclusive conception than usual: inflected forms, misspellings, and so on all
have lexical entries. For purposes of printing a lexicon, there will be an ability
to designate a subset of entries as canonical entries, but that is not currently
implemented.

The lexicon is generated automatically from the texts. It includes an index
of all sentences in which a given form occurs, to provide backlinks from lexical



DRAFT 4

entries to texts. That is, from any entry in the lexicon one may obtain a list of
example sentences, which is the same as a concordance.

The only way to enter a form into the lexicon is by including the form in
a text. In particular, a traditional dictionary is conceived as just another text,
one whose “sentences” are single words. If one enters a traditional dictionary
into CLD, one may enter the example sentences as a second text. (Nothing
prevents one from mixing headwords and example sentences in a single text,
but keeping them separate is probably more useful.)

Although one cannot manually enter a new form into the lexicon, one can
enter information into the lexical entry for an existing form. There is a single
lexical entry for each form, independent of any particular occurrence of the
form in text. In the interest of keeping everything intuitive for non-experts, the
current lexical fields are very general and simple.

First, to deal with misspellings, dialectal variants, orthographic variants,
and the like, one does not correct the original text. Rather, it is possible to
indicate that one form is a variant of another form, which we may call the
canonical form. More generally, we define a canonical form to be any form that
does not have a wvariant-of link. Backlinks are automatically created: if A is
the canonical form of B, then B is included in A’s list of variants.

A canonical form can be viewed as a conventional representative for an
equivalence class of forms. Note that CLD chases variant-of links to find the
ultimate canonical form. That is, if form A is a variant of form B, and form B
is a variant of form C, then the canonical form of A is actually C, not B. (If
there is a cycle, it is broken arbitrarily, but the software prevents the user from
creating cycles under normal circumstances.)

A second relation is introduced for the relationship between an inflected form
and its lemma. One may specify that a form consists of one or more other forms,
which are its constituents. There is no requirement that the constituents exist
independently in texts; entirely new forms may be introduced in the consists-
of field. Nor are any assumptions made about how the constituents combine
to create the derived form. It is possible that the derived form is simply the
concatenation of the constituents, or the constituents may be a stem and infix,
or a template and vowel sequence, or entirely abstract. It is permissible for
constituents to overlap, and it is permissible for the list of constituents to be
incomplete. Whether the order of constituents matters is also up to the user.

Again, backlinks are created automatically. The field derived-forms is au-
tomatically populated; if B is a constituent of A, then A is a derived form of
B.

The only other field currently supported is gloss. This provides the word-
by-word gloss used in interlinear glossed text.

2.3 Typography and orthography

Text entry and display are areas in which there is a tension between the desider-
ata of computational linguists and those of language speakers. Desiderata for
computational linguists include the following:



DRAFT 5)

e Since computational linguists are likely to work with many languages,
including languages with which they have little familiarity, all functionality
should be uniform across languages, and should in particular be available
without the necessity of installing language-specific keyboards or the like.

e CLD files should be easy to process, without recourse to special libraries
(even libraries as broadly available as XML-processing libraries). For this
reason, tabular plaintext formats are used.

e CLD files should be processable even using legacy text-processing tools
such as grep and awk. For this reason, we understand plaintert to mean
ASCII plaintext.

In contrast, speakers of a language desire to enter and view texts using
customary orthography and typography. There are a number of ways in which
customary conventions run athwart of the desiderata just listed.

e Most languages use character sets that include non-ASCII characters.

e Many languages use language-specific input methods (“keyboards”). Chi-
nese is a particularly complex example.

e Languages differ in their tokenization conventions. Some languages do not
mark word breaks at all—Chinese is the obvious example. Vietnamese uses
spaces to mark syllable boundaries rather than word boundaries. Most
Furopean languages use spaces as word separators but have complicating
conventions, such as the use of hyphens or dashes without spaces.

e In most European languages, capitalization is sometimes lexicographically
significant (the proper noun May is lexicographically distinct from the verb
may) and sometimes not (all words are capitalized sentence-initially).

In CLD, a language-general representation is used internally, but language-
specific customization is made available as an option where practicable. Let us
use the term language kit loosely to include all functionality that is specific to
a given language.

The main language kit element is a romanization, which is a mapping be-
tween an ASCII encoding (also known as a practical orthography) and Unicode.
Romanized text consists solely of ASCII characters. (For example, the Arpabet
may be viewed as a romanization for a subset of the IPA.) Romanized text is
used internally to represent text and forms, and may always be used for text
entry. One may think of a romanization as a generic input method, in which
the ASCII text represents the keystrokes, and the mapping to Unicode gives the
resulting text. In keeping with that analogy, when text is displayed, it is always
converted to Unicode, using the romanization.

Input methods are too complex and vary too much from language to language
to make it realistic to include them in CLD, but a user may optionally use an
input method installed in the operating system when entering text. Let us
distinguish between romanized text entry, in which keystrokes are interpreted



DRAFT 6

as ASCII characters in romanized text, and native text entry, in which one uses
an input method installed in the operating system. One may optionally enable
native text entry on a per-language basis.!

To control the forms that appear in the lexicon, romanized text entry must
conform to the convention of using spaces uniformly for word separation, even
if that conflicts with language conventions. When entering romanized Chinese
or Vietnamese text, one must include spaces as word breaks. In European
languages, to distinguish hyphens from dashes, one must use spaces with dashes.
(A hyphenated word is treated as a single token; one may break it into its
constituents in the lexicon.) One must use only lexicographically-significant
capitalization: sentence-initial words should not be capitalized.

If one uses native text entry, one may optionally include word-separation,
tokenization, and/or decapitalization algorithms in the language kit. Alter-
natively, orthographic features such as sentence-initial capitalization or space-
deletion around dashes may be activated in text display only.?

Word senses. One final issue that I include here, though not properly a
typographic or orthographic issue, is the disambiguation of word senses. During
text entry, one may flag a word as having a non-default sense by suffixing it with
a sense number, a period being used to separate the sense number from the
token proper. CLD does not distinguish between polysemy and homonymy, but
each word sense has its own lexical entry. I have found it best to minimize the
use of word senses, using them only for the starkest homonym distinctions, but
the facility may be used as one sees fit.

One may use either a form with sense number or a form without sense number
to access the lexicon. If a sense number is provided, one obtains a single lexical
entry, and if not, one obtains a list of entries all sharing the same form. In text,
a form without a sense number is treated as having sense 0, the default sense.

2.4 Recordings

Tokenized text mediates between audio and lexicon. We have discussed the
connection to the lexicon; let us turn to the connection between text and audio
recordings.

CLD assumes that an audio or audio-video file is given; creating recordings
is outside its purview. For both practical and conceptual reasons, media files
are kept in a media directory separate from the CLD texts and lexicons.

The practical reason is that an entire CLD corpus is usually smaller than a
single media file, and file management (for example, under git) is simplified if
one keeps such disparately-sized files separate. Also, for the sake of portability,

1One might expect CLD to automatically detect native text entry by the presence of non-
ASCII characters, but it is not possible to automatically detect when a string consisting
entirely of ASCII characters is intended as Unicode text rather than romanized text, and even
a string intended as romanized text may contain non-ASCII characters like so-called “smart
quotes.”

2The display options are not currently implemented.



DRAFT 7

all CLD files apart from media use simple tabular ASCII formats, and keeping
them separate from binary files again simplifies data management.

Conceptually, CLD files are viewed as annotations of audio files, and expe-
rience suggests that stand-off annotation, rather than integrated annotation, is
more flexible and easier to manage. Note that this does not preclude texts that
lack an audio representation, but the most complete case is an audio recording
connected to the lexicon via a tokenized text.

CLD provides the ability to transcribe an audio recording in order to cre-
ate the simple-text annotation. The interface is intended to be as simple and
streamlined as possible. Transcription consists in marking the locations of units
of interest, which are called snippets. Snippets are typically small, small enough
that one can transcribe them immediately after hearing them, without replaying
them. They may consist of single words, a few short words, or even just a part
of a word.

A transcript is a list of snippets. A tokenized text called a transcribed-
text column is automatically generated from a transcript by concatenating the
snippets, separated by spaces. In the text, no distinction is made between
the spaces between snippets and any that occur within a snippet. The space
between two snippets may be suppressed by flagging the second snippet as a
word continuation. Sentence breaks are introduced by flagging sentence-initial
snippets.

A transcribed-text column differs from an original-text column in only two
ways: the transcribed-text column is read-only, and its sentences and tokens are
linked to audio.

2.5 Complex texts and stubs

A text in CLD is actually a container for elements that can occur in different
combinations. The elements we have already discussed are the media file,? the
transcript, the transcribed-text column, the original-text column, and the trans-
lation. A text is defined to be a recording if it contains a media file. A recording
may, but need not, also contain a transcript, which automatically generates a
transcribed-text column. A recording may also contain a translation, which is
aligned with the transcribed-text column in the same way that a translation is
aligned with an original-text column.

A text is defined to be a simple text if it contains an original-text column.
Recordings and simple texts are mutually exclusive: an original-text column is
not permitted if a media file exists.

There is one additional element, namely, a table of contents (TOC). A text
that contains a TOC is a complex text. The presence of a TOC excludes all
other elements. The TOC is a list of component texts. Each component text
has a unique name, and may be accessed either by name or by position.

Finally, a newly created text contains no elements, and is called a stub.
One may convert it to any of the other three text types by adding a media file,

3More precisely, a pointer to the media file.



DRAFT 8

original-text column, or TOC.

2.6 Languages and corpus

For the sake of simplicity, texts in CLD are always monolingual. Occasional
foreign words that occur in otherwise monolingual text can be treated as forms
like any other and marked as non-native. Parallel texts or other documents
that contain passages in multiple languages can be subdivided into multiple
monolingual texts. CLD does not currently provide a way of aligning texts
across languages. These solutions may be awkward or unworkable for some
documents, such as texts that contain a great deal of code-switching; CLD is
not the appropriate tool for such documents.

As has already been discussed, central to CLD is the ability to cover a
wide variety of languages in a uniform fashion, so as to support cross-linguistic
study, and particularly the aims of inductive general grammar. Each language
represents a sub-corpus. Each contains a lexicon and a list of texts. Texts are
organized in a hierarchy, with complex texts as nonterminal nodes. At the same
time, each text has a unique ID (that is, unique within the language), and there
is an index that permits direct access to texts by ID, as well as iteration over
all texts. There is a separate text index for each language.

Finally, at the highest level, languages are collected into a CLD corpus. The
corpus is the CLD application file. It may range in size from a single text to a
full-blown universal corpus.

2.7 Principles

In the course of the discussion, we have touched on some of the principles guiding
the design of CLD. To summarize:

e The primary goals are the production of large quantities of simple, uniform
data across multiple languages, and supporting language self-study that
complements immersion learning.

e CLD does not aim to be all things to all users. It does not aspire for
print-quality page description or coverage of every conceivable type of
text. Other software already exists that serves the needs of producing
archival-quality documents in which all details of grammatical and dis-
course structure are captured.

e Simplicity, generality, and intuitiveness are paramount.

e Equally important is robustness in the face of the variation that one en-
counters when documenting less well-studied languages. Using a variant-of
field instead of insisting on orthographic regularity provides one example.

e Constraints on the user are minimized. The user is free to choose the
orthography, or what constitutes a translation unit, or what sized snippets
to use in transcription.



DRAFT 9

3 Overview of implementation

CLD is implemented in pure Python, and requires no installation beyond un-
packing a tar file.

3.1 Desktop and web application

The application can either be run locally as a desktop application or remotely
as a web application. The desktop application is implemented by running the
web application within an internal web server. One may think of it as a desktop
application that uses a web browser as user interface.

3.2 Permissions

There is a permissions system and user login support. Each item (text, lan-
guage, corpus as a whole) has independent permissions. Default permissions
are inherited from the containing item: protecting a language or complex text
protects everything that it contains, as well.

Permissions are granted to particular users to perform particular actions.
The actions are read, write, and administer. (Administration permission is
needed in order to change an item’s permissions.) One does not grant permission
to perform an action directly, but rather one assigns users to roles: owner, editor,
or reader. An owner may perform any action, an editor may read or write, and
a reader may only read.

Roles may be assigned to groups, in which case every member of the group
inherits the granted permissions. There is no fundamental distinction between
groups and users: a group is simply a user that has members.

Permissions are only required in a multi-user context, which is to say, within
the web application. When CLD is run as a desktop application, the user is set
to root, which automatically has permission to perform any action.

3.3 Substrate, database, interface

The software is organized into three layers. The lowest layer is the substrate
layer, which provides robust files. A robust file adds file locking, backup, and
undo, which are essential in a multi-user context in which errors may occur
during file edits. When one opens a robust file for writing, it is first locked,
to assure that only one person writes the file at a time. The output stream
that is returned to the caller actually writes to a temporary file. The original
file remains untouched until the output stream is closed without error. At that
point, the original file becomes a backup and the temporary file is moved into its
place. The user may undo a write by replacing the original file with its backup.

The second layer is the database layer, which provides persistent items. Per-
sistent items are software objects that are backed by robust files. In a web-
application context, every request begins with a blank slate—in particular, one
cannot afford an expensive start-up cost to load the corpus. When one accesses



DRAFT 10

the corpus, its children (the languages) are instantiated but not immediately
loaded. The contents of a persistent item are loaded lazily, the first time they
are required. Persistent items also contain metadata, stored in the same physi-
cal file as the item contents. Metadata includes permissions, as well as e.g. text
metadata such as title, author, etc.

I distinguish persistent directories from persistent files. Any container—text,
language, corpus—is represented by a persistent directory. Persistent directories
give the database a hierarchical structure. A persistent directory behaves like a
hash table, mapping child names to persistent items representing the children.

The topmost layer is the interface layer. It also has a hierarchical structure,
but it is only loosely connected to the hierarchical structure of the database. Its
hierarchical structure corresponds to the pathname of a URL, terminating in a
web page that represents a viewer or editor for a database item or a collection
of database items or a piece of a database item. The interface layer is organized
around the actions that a user may wish to perform, whereas the database layer
is organized around the natural structure of the data.

4 Next steps

The next major steps are automatic transcription and morphological inference.
There is limited prior work on automatic transcription. There is some work
on mapping directly from audio to translation, but that work, like virtually
all work in the speech recognition literature, assumes a significant amount of
training data.

We are currently exploring an alternative approach, one with vastly reduced
requirements for language-specific training data. The plan is to construct a
language-independent automatic phonetic transcriber that produces a coarse
phonetic transcription. The only language-specific component is then a pro-
nunciation model that maps orthographic strings to phone sequences. The fact
that most low-resource languages lack of a long history of literacy becomes an
advantage: it implies that the relation between orthography and pronunciation
is, in most cases, fairly transparent.

The second major research issue is morphological inference. We would like
to determine, in particular, whether having word glosses can be exploited to
improve automatic morphological analysis. The standard IBM model of auto-
matic alignment of text and translation has been implemented, though not yet
incorporated into the released system.

References

[1] Abney, Steven, and Steven Bird. The human language project: Building a
corpus of the world’s languages. Proceedings of the ACL. 2010.

[2] Bird, Steven. Natural language processing and linguistic fieldwork. Com-
putational Linguistics. 2009.



DRAFT 11

[3] Bird, Steven. A scalable method for preserving oral literature from small
languages. International Conference on Asian Digital Libraries (ICADL).
2010.

[4] Bird, Steven, Lauren Gawne, Katie Gelbart, and Isaac McAlister. Collect-
ing bilingual audio in remote indigenous communities. Coling. 2014.

[5] Bloomfield, Leonard. Language. Holt, New York. 1933.

[6] Universal Dependencies. https://universaldependencies.org/, ac-
cessed 2019 July 19.



