Dependency Parsing and Brown Clustering

Steven Abney
University of Michigan

2015 Mar 27

Dependency parsing

Dependency parsing

Dependency parsing

Problem Definition

@ Learning a dependency parser in a new language

e Variant of grammatical inference
e We know how to do supervised learning from a treebank

@ Treebanks

o | know of TBs for 43 languages:

Arabic

Armenian, Ancient
Basque

Bulgarian

Catalan

Chinese

Czech

Danish

Dutch

English

English, Early Modern

English, Middle
English, Old
Estonian
Finnish

French
German
Gothic

Greek

Greek, Ancient
Hebrew
Hindi-Urdu

Hungarian
Icelandic
Indonesian
Italian
Japanese
Karuk
Korean
Latin
Polish
Portuguese
Portuguese, Medieval

Romanian

Russian

Slavonic, Old Church
Slovene

Spanish

Swedish

Thai

Turkish

Ugaritic

Vietnamese

e But there are 6800 languages (Ethnologue)
e Increasing interest from e.g. Google, DoD

@ Transfer: Ly treebank — parser — Ly

Dependency parsing

Dependency Trees

-
subj
Prlon \ll\obj subj
this is _—
spec DT T Prlon
|
an example this
govr: 2 0 4
role: subj root det
pos: Pron V DT
W this is an
id: 1 2 3

root

obj
m
/‘F\

v DT N
| | |

is an example
2

obj

N

example

4

Dependency parsing
Dependency-parsing task

Input ‘ L Output ‘ U Output
[1] this Pron | 2 subj 2
[2] is \% 0 root 0
[3] an DT | 4 det 4
[4] example N 2 obj 2

@ Attachment Score = proportion correct
e LAS, UAS

Dependency parsing

“Transition-based” dependency parsing (Nivre)

@ Dependency parsers: transition-based, chart

@ "Arc-eager” operations (my variant):

LD: T is left dependent of N. Next must be Pop.
RD: N is right dependent of T. Next must be Shift.
Pop: remove T from stack.

Shift: move N from buffer to stack.

e Transition = (configuration = configuration):

T N T N
Root is an | example LD:F;OP Root is | example

| | | | |
(is) this (is) this an

Dependency parsing

Oracle = Classifier

@ Supervised training

Instance (feature vector) Label (next op)

buffer 0 form = example LD
buffer 0 lemma = example
buffer 0 cpos = N

buffer 0 fpos = NN

buffer 0 morph = sg
buffer 1 form = None
buffer 1 fpos = None
buffer 2 fpos = None
buffer 3 fpos = None
buffer 0 Ic role = None
stack 0 form = an

stack 0 lemma = a

stack 0 cpos = D

stack 0 fpos = DT

stack 0 morph = None
stack 0 role = None

stack 1 fpos = VBZ

o Features are mostly features of words: form, lemma, cpos,
fpos, morph

Dependency parsing

Eisner chart-parsing for dependencies (modified)

Root
guy
in
my
class
taught
his
cat
to
play
piano
EOS

@ Edges and voids
e Voids “hide" completed material
@ Bottom-up binary and unary combinations
e Void + edge = right-spreading void
e Edge + void = left-spreading void
e Unary: void — edge

@ We can use CKY algorithm (n3); naive dep. chart parsing is n°

Dependency parsing

General pattern

A |~ ,»\,J
a b ¢ d e f

@ One terminal void for each covering edge
o Spread rightward first (left dependents)
o Then spread leftward (right dependents)
o Create covering edge

Dependency parsing
Edges & voids correspond to stack actions

a b a b ™ dr-’e’?\f
~
a"bic Pl &b e
2 d - s
: |E| a b ~ — if
e .
: d
a™ b ™ d:e _
|E| ae :f
> b+« :
a™ b ™ df?e ¢ dﬁeﬁ
A~ é r < N .
a byl RorS] ae, ¥
el

Dependency parsing

McDonald et al 2005: probabilistic version

@ Similar features to Nivre, but Eisner chart parsing
@ Tree score:
0,1
S = ZWkak(g,',d,') =WwW-C
k i
—_—

Ck

o Features fx(g, d) = features of g, d, and words around them
o Positive-weighted features = good tree, negative = bad
o Probability = exp(S)

@ Learning = determining weights wj

Dependency parsing

Supervised learning

o Classic approach is EM; compute-expensive but weak
performance
@ Alternative: error-driven update (perceptron, MIRA)

o Initial weight vector w =0
o Parse a sentence; get k best parses T;. Gold parse = G.
o For each T; # G: if S(T;) > S(G) then

witt) w4 ple(G) — ¢(T)]

@ Perceptron has fixed step size 7, MIRA has adaptive step size

@ Averaging makes it more robust:

Brown clustering

Brown clustering

Brown clustering

Word clustering for dependency parsing

@ Sparse data problem
o Feature values are often words, lemmas
e Most words are rare: many words in test
never seen in training
e Back off to groups of words: clusters

buffer 0 form =
buffer 0 lemma =
buffer 0 cpos = D
buffer 0 fpos = DQ
buffer 0 morph = sg
buffer 1 form =
buffer 1 fpos = NN
buffer 2 fpos = None
buffer 3 fpos = None
buffer 0 Ic role = None
stack 0 form =

stack 0 lemma =
stack 0 cpos = V
stack 0 fpos = VBZ
stack 0 morph = 3s
stack 0 role = root
stack 1 fpos = PP

Brown clustering

Brown clustering
HMMs with classes

EOS —0

@ Model is assignment of words to classes an —1
@ Each word belongs to unique class: example — 2
classes are not hidden Is —3
this —1

1 3 1 2 0
this is an example EOS

p(text|model) = p(1|0) p(this|1) x p(3|1) p(is|3) x ...

@ Choose model to maximize likelihood L = p(text|model)

Brown clustering

Simplifying the likelihood function

= p(10) p(this|1) x p(3]1) p(is[3) x

a=0 a=1
6=1 8=3
x = this x=Is

@ Group factors by a, 5, x

L= TT[p(Bla)p(x|B)]eH7)
a,B.x

Brown clustering

Simplifying the likelihood function

@ Taking the log makes it more tractable

f = Z ct(a, B, x)[log p(B|a) + log p(x|5)]

a,B,x
p0.8) \ p(.)
= 2 el)) [os %y o5

e Move p(f) and distribute

- 0. 8)log Pl 5) Do X
_ %;p(B gp(a)p(er%p(&) log p(83,)

Brown clustering

Simplifying the likelihood function

@ Class is unique given word. Suppose x's class is a.

if 8=a: p(B,x)=p(x)
if 8#a: p(B,x)=0

e So:
> p(B,x)log p(B,x) = p(x)log p(x)
8
e And:
(N = pla ,ﬁ)log +ZP) log p(x
a8

1(A;B) H(X)

@ Choose classes to maximize I(A; B)

Brown clustering

How do we maximize /(A; B)?

Start off with every word in its own cluster

Consider merging two clusters «, 3. Compute the resulting
value of /(A; B).

Choose the pair that gives the maximum new /(A; B).

Produces a hierarchical clustering

I

a b ¢ d e

@ But how to do it efficiently?

Brown clustering

Maximize graph weight = sum of edge weights

@ Score = mutual information:

_ P f)
=2 o) o8 e)
q(;:@)

@ Think of it as a graph

Nodes are clusters

Edges connect clusters that co-occur: p(a, 5) >0
Edge weight is g(«, 3)

These are directed edges

Brown clustering
Undirected graph

@ Combine pairs of directed edges to make one undirected edge

= { om0 LS

@ Now:

=3 Qa,f)

a<lp

Brown clustering

An example

see spot run EOS
run spot run EOS
run run EQOS
see jane EQS
jane run EQS
run jane EOS

I = 0.602

Brown clustering

Algorithm

@ The algorithm:
o Build graph
o For each pair of nodes (a,), compute the cost (loss) of
merging o + 8
o Choose the minimum-cost pair and merge them
e Update p, Q, etc. and repeat

e Loss L(a, f3)
o Merging o + 8 cannot increase /. L(c,) > 0, small is good.
e What is the effect of doing a merger?
e How do we update loss matrix for other pairs, without
recomputing from scratch?

¥ ©® ©

Node weight s(a) = Z Q(v, o)

Merged-node weight S(o, 8) = Z Q(v,a +)

A=—s(a)—s(8)+ Qa,B) +S(«, 5)
——

dbl-counted

e Q(v,a+ () can be computed without actually creating a
node:

Q(V;OC+B) = q(V,a—l—B)—i—q(oz—i—ﬁ,V)
p(v; o+ B)
1(v) p2(a + B)

q(v,a+p8) = p(l/,a+ﬂ)|0gp
pv,a+p) = p(v,a)+p(v,pB)

Brown clustering
Loss

o A <0. Loss = —A:

(e, B) = s(a) + s(8) — Q(a, B) — S(e, B)

@ Maintain array s and matrix S, compute L on the fly.
o Updating
e Suppose we merge A+ =T

o No effect on Q(«, 3)
o What is the effect on s(a) and S(«, 8)?

As and AS

Nvee &
O0O®® O 0O0OHO® OO0 O

- Before After After - Before

As(a) = Q(m,a) = Q) a) — Q(u, @)
AS(a,B) = Q(r,a+B)— QA a+B)— Q(u,a+)

Brown clustering

Algorithm, final form

o Create graph
o Compute Q(«, 3) for edges, s(«) for nodes
o Co-edge (o, 3) iff a and S share a neighbor
e Compute S(«, 3) for each co-edge

@ Main loop
o Among co-edges, maximize s(\) + s(u) — Q(A, 1) — S(A\,)
e Pre-update:

s(@) = s(a) = QX a) - Q(n,a)
S(e,p) = S,) = QN a+p) - Qu,a+p)
o Delete nodes A and p, add node 7. Compute Q(v,7) and s(7).
o Post-update:
s(@) = s(a)+Q(r,a)
S(e,8) = S(a,B8)+ Q(r,a+B)

AV clustering

Attribute-value clustering

AV clustering

Returning to tree scoring in dependency parsing

@ Tree score
o Edge candidates (gj, d;). Tree = subset | ¥V word has 1 govr
o Edge has set of features: {k|fc(gi,d;) =1}.
e v; is a bit vector whose k-th bit is fi(g;, d;).
o Tree score:

order:dep-govr
d-form:
d-lemma:

o Candidate-edge feature set: ;ffff,N
g-lemma:
g-cpos:V

AV clustering

Attribute-value clustering

@ Usual approach: use plain text to get clusters
o Alternative

o Build clusters that are specific to parsing
o Let's include higher-order features, e.g.
role = subj
g?Imesa :J = su b_]()
d-lemma =
o Which we view as
attribute: subj()
value:
o Goal: simultaneous clustering of attributes and values

@ Generally applicable to instances represented as sets of AV
pairs

AV clustering

Different generative model

@ Generating a single data point:

p(x,y) = p(e, B) p(x|a) p(y|B)

o Log likelihood: group by a, 3, x, y:

UN = > pla, B,x,y)log[p(a, B) p(x|a) p(y|B)]
a,B,x,y
= o, B, x 0| p(e,) og p(x, a 0|
= a;mp(B, %, Y) [l 8 () p(5) + OEPL)+ gp(yaﬂ)}
= (e} [0} p(6 P(X) 10 X [o]
= azﬁp(,ﬂ)lgp(a)p(ﬁ)+z) log p()+Z ¥)log p(y
I(A;B) —H(X) —H(Y)

@ Same bottom line: seek classes that maximize /(A; B)
e Once we have the graph, the algorithm is the same

see spot run EOS
run spot run EOS
run run EQS
see jane EQS
jane run EOS
run jane EOS

@ No loops

@ No edges between atts or
between values

AV clustering

Context distributions

e Define context distribution p,(7) = 57

o
=
Q
&

T3 v

v,

o Distribution over contexts of «.
@ Since p(a,~y) = 0 in the bigraph case, we have:
Qa,v) = q(v, @)

@ Hence:

s(@) = Y p(v,0q) log PL22)

- p(7) p(@)
_ o log Pa(?)
= Y p(v,0)log o)

Y

Context distributions

e Can also be defined for s(a + f3):

poz-i—ﬁ(’Y) =

@ Hence:

s(a+8) = Y p(v,a+p)log

p(y,a+ B)
p(a+B)

p(y,a+ p)
p(v) p(a+ B)

= > p(y,0)log =22 p‘”ﬁ)4 Z p(7. B
Y

) log

pa+5(7)

p(7)

AV clustering
Loss

@ Since the graph is now a bigraph, L simplifies (slightly):

=0

—
L(a, B) = s(a) + s(8) — Q(a, B) —s(a + B)
@ Using our previous results:
s(a) +5(8) | Ly p(v,0)log 28) + 55, p(y, B) log 2

Pats(7) Pats(7)
— sla+B) | Xpplv,a)log P+ 3T p(y, B) log PoESE

— L(a, B) ng(%a)log,,fj‘_i% + ng(%ﬁ)log%

AV clustering

Punch line

o Finally:

L(OZ,B) _ pla) D
pla+pB) Plth)

(PallPats) + 555 D(psllpa-)

@ This is the Jensen-Shannon divergence of p, from pg

@ Minimizing loss = merging the pair of clusters whose context
distributions are most similar

	Dependency parsing
	Brown clustering
	AV clustering

