K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Dependency Parsing and Brown Clustering

Steven Abney

University of Michigan

2015 Mar 27

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

Dependency parsing

KORK ERKER ADE YOUR

Problem Definition

Learning a dependency parser in a new language

- Variant of grammatical inference
- We know how to do supervised learning from a treebank
- **o** Treebanks
	- I know of TBs for 43 languages:

- But there are 6800 languages (Ethnologue)
- Increasing interest from e.g. Google, DoD
- Transfer: L_1 treebank \rightarrow parser $\rightarrow L_2$

 2990

ミー

イロメ イ部メ イ君メ イ君メ

Dependency Trees

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Dependency-parsing task

- \bullet Attachment Score $=$ proportion correct
- LAS, UAS

KORK STRAIN A BAR SHOP

"Transition-based" dependency parsing (Nivre)

- Dependency parsers: transition-based, chart
- "Arc-eager" operations (my variant):
	- LD: T is left dependent of N. Next must be Pop.
	- RD: N is right dependent of T . Next must be Shift.
	- Pop: remove T from stack.
	- \bullet Shift: move N from buffer to stack.
- Transition $=$ (configuration \Rightarrow configuration):

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

$Oracle = Classifier$

• Supervised training

Features are mostly features of words: form, lemma, cpos, fpos, morph

KORK STRAIN A BAR SHOP

Eisner chart-parsing for dependencies (modified)

- **Edges and voids**
	- Voids "hide" completed material
- Bottom-up binary and unary combinations
	- \bullet Void + edge = right-spreading void
	- Edge $+$ void $=$ left-spreading void
	- Unary: void \rightarrow edge

We can use CKY algorithm (n^3) ; naive dep. chart parsing is n^5

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

General pattern

- One terminal void for each covering edge
	- Spread rightward first (left dependents)
	- Then spread leftward (right dependents)
	- Create covering edge

Edges & voids correspond to stack actions

KORK STRAIN A BAR SHOP

KORK ERKER ADE YOUR

McDonald et al 2005: probabilistic version

- Similar features to Nivre, but Eisner chart parsing
- **•** Tree score:

- Features $f_k(g, d)$ = features of g, d, and words around them
- Positive-weighted features $=$ good tree, negative $=$ bad
- Probability = $exp(S)$
- Learning $=$ determining weights w_k

KORK ERKER ADE YOUR

Supervised learning

- Classic approach is EM; compute-expensive but weak performance
- Alternative: error-driven update (perceptron, MIRA)
	- Initial weight vector $w = 0$
	- Parse a sentence; get k best parses T_i . Gold parse $= G$.
	- For each $T_i \neq G$: if $S(T_i) \geq S(G)$ then

$$
\mathbf{w}^{(t+1)} \leftarrow \mathbf{w}^{(t)} + \eta [\mathbf{c}(G) - \mathbf{c}(T_i)]
$$

- Perceptron has fixed step size η , MIRA has adaptive step size
- Averaging makes it more robust:

$$
\mathbf{w} \leftarrow \frac{1}{N}(\mathbf{w}^{(1)}, \ldots, \mathbf{w}^{(N)})
$$

イロト イ御 トイミト イミト ニミー りんぴ

Brown clustering

Word clustering for dependency parsing

- Sparse data problem
	- Feature values are often words, lemmas
	- Most words are rare: many words in test never seen in training
	- Back off to groups of words: clusters

buffer 0 form = another buffer 0 lemma $=$ another buffer 0 cpos $= D$ buffer 0 fpos $=$ DQ buffer 0 morph $=$ sg $buffer 1 form = example$ buffer 1 fpos $=$ NN $buffer 2 fpos = None$ $buffer 3 fpos = None$ buffer 0 lc role $=$ None stack 0 form $=$ is stack 0 lemma $=$ be stack 0 cpos $= V$ stack 0 fpos $=$ VBZ stack 0 morph $= 3s$ stack 0 role $=$ root stack 1 fpos $=$ PP

KORK STRAIN A BAR SHOP

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Brown clustering HMMs with classes

$$
\begin{array}{cccccc}\n1 & 3 & 1 & 2 & 0 \\
\text{this} & \text{is} & \text{an} & \text{example} & \text{EOS}\n\end{array}
$$

 $p(text|model) = p(1|0) p(this|1) \times p(3|1) p(is|3) \times ...$

• Choose model to maximize likelihood $L = p(text | model)$

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

Simplifying the likelihood function

$$
L = \underbrace{p(1|0) p(this|1)}_{\substack{\alpha = 0 \\ \beta = 1 \\ x = this}} \times \underbrace{p(3|1) p(is|3)}_{\substack{\alpha = 1 \\ \beta = 3 \\ x = is}} \times \dots
$$

• Group factors by α, β, x

$$
L = \prod_{\alpha,\beta,\mathsf{x}} [p(\beta|\alpha) p(\mathsf{x}|\beta)]^{\mathsf{ct}(\alpha,\beta,\mathsf{x})}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Simplifying the likelihood function

• Taking the log makes it more tractable

$$
\ell = \sum_{\alpha,\beta,\mathsf{x}} \mathsf{ct}(\alpha,\beta,\mathsf{x})[\log p(\beta|\alpha) + \log p(\mathsf{x}|\beta)]
$$

$$
\ell/N = \sum_{\alpha,\beta,x} p(\alpha,\beta,x) \left[\log \frac{p(\alpha,\beta)}{p(\alpha)} + \log \frac{p(\beta,x)}{p(\beta)} \right]
$$

• Move $p(\beta)$ and distribute

$$
= \sum_{\alpha,\beta} p(\alpha,\beta) \log \frac{p(\alpha,\beta)}{p(\alpha) p(\beta)} + \sum_{\beta,x} p(\beta,x) \log p(\beta,x)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Simplifying the likelihood function

• Class is unique given word. Suppose x's class is α .

if
$$
\beta = \alpha
$$
: $p(\beta, x) = p(x)$
if $\beta \neq \alpha$: $p(\beta, x) = 0$

So:

$$
\sum_{\beta} p(\beta, x) \log p(\beta, x) = p(x) \log p(x)
$$

And:

$$
\ell/N = \underbrace{\sum_{\alpha,\beta} p(\alpha,\beta) \log \frac{p(\alpha,\beta)}{p(\alpha)p(\beta)}}_{I(A;B)} + \underbrace{\sum_{x} p(x) \log p(x)}_{H(X)}
$$

• Choose classes to maximize $I(A; B)$

KORK STRAIN A BAR SHOP

How do we maximize $I(A; B)$?

- Start off with every word in its own cluster
- Consider merging two clusters α, β . Compute the resulting value of $I(A; B)$.
- Choose the pair that gives the maximum new $I(A;B)$.
- Produces a hierarchical clustering

• But how to do it efficiently?

KORK ERKER ADE YOUR

Maximize graph weight $=$ sum of edge weights

 \bullet Score $=$ mutual information:

$$
I = \sum_{\alpha,\beta} \underbrace{p(\alpha,\beta) \log \frac{p(\alpha,\beta)}{p_1(\alpha) p_2(\beta)}}_{q(\alpha,\beta)}
$$

- Think of it as a graph
	- Nodes are clusters
	- Edges connect clusters that co-occur: $p(\alpha, \beta) > 0$
	- Edge weight is $q(\alpha, \beta)$
	- These are directed edges

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

Undirected graph

Combine pairs of directed edges to make one undirected edge

$$
Q(\alpha, \beta) = \begin{cases} q(\alpha, \beta) + q(\beta, \alpha) & \text{if } \alpha \neq \beta \\ q(\alpha, \alpha) & \text{if } \alpha = \beta \end{cases}
$$

Now:

$$
I=\sum_{\alpha\leq\beta}Q(\alpha,\beta)
$$

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

An example

 $I = 0.602$

KORK ERKER ADE YOUR

Algorithm

- The algorithm:
	- Build graph
	- For each pair of nodes (α, β) , compute the cost (loss) of merging $\alpha + \beta$
	- Choose the minimum-cost pair and merge them
	- \bullet Update p, Q, etc. and repeat
- Loss $L(\alpha, \beta)$
	- Merging $\alpha + \beta$ cannot increase *I*. $L(\alpha, \beta) \geq 0$, small is good.
	- What is the effect of doing a merger?
	- How do we update loss matrix for other pairs, without recomputing from scratch?

$$
\Delta = -s(\alpha) - s(\beta) + \underbrace{Q(\alpha, \beta)}_{\text{dbI-counted}} + S(\alpha, \beta)
$$

• $Q(\nu, \alpha + \beta)$ can be computed without actually creating a node:

$$
Q(\nu, \alpha + \beta) = q(\nu, \alpha + \beta) + q(\alpha + \beta, \nu)
$$

\n
$$
q(\nu, \alpha + \beta) = p(\nu, \alpha + \beta) \log \frac{p(\nu, \alpha + \beta)}{p_1(\nu) p_2(\alpha + \beta)}
$$

\n
$$
p(\nu, \alpha + \beta) = p(\nu, \alpha) + p(\nu, \beta)
$$

KORK ERKER ADE YOUR

 $\bullet \Delta \leq 0$. Loss = $-\Delta$:

$$
L(\alpha, \beta) = s(\alpha) + s(\beta) - Q(\alpha, \beta) - S(\alpha, \beta)
$$

- Maintain array s and matrix S , compute L on the fly.
- **•** Updating
	- Suppose we merge $\lambda + \mu \Rightarrow \tau$
	- No effect on $Q(\alpha, \beta)$
	- What is the effect on $s(\alpha)$ and $S(\alpha, \beta)$?

 \equiv 990

イロン イ部ン イ君ン イ君ン

∆s and ∆S

$$
\Delta s(\alpha) = Q(\tau, \alpha) - Q(\lambda, \alpha) - Q(\mu, \alpha) \Delta S(\alpha, \beta) = Q(\tau, \alpha + \beta) - Q(\lambda, \alpha + \beta) - Q(\mu, \alpha + \beta)
$$

Algorithm, final form

- Create graph
	- Compute $Q(\alpha, \beta)$ for edges, $s(\alpha)$ for nodes
	- Co-edge (α, β) iff α and β share a neighbor
	- Compute $S(\alpha, \beta)$ for each co-edge
- Main loop
	- Among co-edges, maximize $s(\lambda) + s(\mu) Q(\lambda, \mu) S(\lambda, \mu)$
	- Pre-update:

$$
s(\alpha) = s(\alpha) - Q(\lambda, \alpha) - Q(\mu, \alpha)
$$

$$
S(\alpha, \beta) = S(\alpha, \beta) - Q(\lambda, \alpha + \beta) - Q(\mu, \alpha + \beta)
$$

- Delete nodes λ and μ , add node τ . Compute $Q(\nu, \tau)$ and $s(\tau)$.
- Post-update:

$$
s(\alpha) = s(\alpha) + Q(\tau, \alpha)
$$

$$
S(\alpha, \beta) = S(\alpha, \beta) + Q(\tau, \alpha + \beta)
$$

KORK STRAIN A BAR SHOP

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

Attribute-value clustering

Returning to tree scoring in dependency parsing

- **o** Tree score
	- Edge candidates (g_i, d_i) . Tree $=$ subset $\vert \ \forall$ word has 1 govr
	- Edge has set of features: $\{k \mid f_k(g_i, d_i) = 1\}.$
	- **v**_i is a bit vector whose k-th bit is $f_k(g_i, d_i)$.
	- **a** Tree score:

$$
S = \sum_{k} w_k \sum_{i} f_k(g_i, d_i)
$$

=
$$
\sum_{i} \mathbf{w} \cdot \mathbf{v}_i
$$

• Candidate-edge feature set:

order:dep-govr d-form:dog d-lemma:dog d-cpos:N g-form:barks g-lemma:bark g-cpos:V . . .

KORK STRAIN A BAR SHOP

KORK ERKER ADE YOUR

Attribute-value clustering

- Usual approach: use plain text to get clusters
- **•** Alternative
	- Build clusters that are specific to parsing
	- Let's include higher-order features, e.g.

• Which we view as

- Goal: simultaneous clustering of attributes and values
- Generally applicable to instances represented as sets of AV pairs

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Different generative model

• Generating a single data point:

$$
p(x, y) = p(\alpha, \beta) p(x|\alpha) p(y|\beta)
$$

• Log likelihood: group by α, β, x, y :

$$
\ell/N = \sum_{\alpha,\beta,x,y} p(\alpha,\beta,x,y) \log [p(\alpha,\beta) p(x|\alpha) p(y|\beta)]
$$

=
$$
\sum_{\alpha,\beta,x,y} p(\alpha,\beta,x,y) \left[\log \frac{p(\alpha,\beta)}{p(\alpha) p(\beta)} + \log p(x,\alpha) + \log p(y,\beta) \right]
$$

=
$$
\sum_{\alpha,\beta} p(\alpha,\beta) \log \frac{p(\alpha,\beta)}{p(\alpha) p(\beta)} + \sum_{x} p(x) \log p(x) + \sum_{y} p(y) \log p(y)
$$

$$
I(A,B) = -H(X)
$$

• Same bottom line: seek classes that maximize $I(A; B)$ • Once we have the graph, the algorithm is the same

see spot run EOS run spot run EOS run run EOS see jane EOS jane run EOS run jane EOS

- No loops
- No edges between atts or between values

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

Context distributions

- Define context distribution $p_\alpha(\gamma) = \frac{p(\gamma,\alpha)}{p(\alpha)}$
	- Distribution over contexts of α .

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

• Since $p(\alpha, \gamma) = 0$ in the bigraph case, we have:

$$
Q(\alpha,\gamma)=q(\gamma,\alpha)
$$

Hence:

$$
s(\alpha) = \sum_{\gamma} p(\gamma, \alpha) \log \frac{p(\gamma, \alpha)}{p(\gamma) p(\alpha)}
$$

$$
= \sum_{\gamma} p(\gamma, \alpha) \log \frac{p_{\alpha}(\gamma)}{p(\gamma)}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Context distributions

• Can also be defined for $s(\alpha + \beta)$:

$$
p_{\alpha+\beta}(\gamma)~=~\frac{p(\gamma,\alpha+\beta)}{p(\alpha+\beta)}
$$

o Hence:

$$
s(\alpha + \beta) = \sum_{\gamma} p(\gamma, \alpha + \beta) \log \frac{p(\gamma, \alpha + \beta)}{p(\gamma)p(\alpha + \beta)}
$$

=
$$
\sum_{\gamma} p(\gamma, \alpha) \log \frac{p_{\alpha + \beta}(\gamma)}{p(\gamma)} + \sum_{\gamma} p(\gamma, \beta) \log \frac{p_{\alpha + \beta}(\gamma)}{p(\gamma)}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

Loss

• Since the graph is now a bigraph, L simplifies (slightly):

$$
L(\alpha, \beta) = s(\alpha) + s(\beta) - \overbrace{Q(\alpha, \beta)}^{= 0} - s(\alpha + \beta)
$$

• Using our previous results:

$$
\begin{array}{c|c|c|c|c} s(\alpha) + s(\beta) & \sum_{g} p(\gamma, \alpha) \log \frac{p_{\alpha}(\gamma)}{p(\gamma)} & + & \sum_{g} p(\gamma, \beta) \log \frac{p_{\beta}(\gamma)}{p(\gamma)} \\ \hline & - & s(\alpha + \beta) & \sum_{g} p(\gamma, \alpha) \log \frac{p_{\alpha + \beta}(\gamma)}{p(\gamma)} & + & \sum_{g} p(\gamma, \beta) \log \frac{p_{\alpha + \beta}(\gamma)}{p(\gamma)} \\ \hline & = & L(\alpha, \beta) & \sum_{g} p(\gamma, \alpha) \log \frac{p_{\alpha}(\gamma)}{p_{\alpha + \beta}(\gamma)} & + & \sum_{g} p(\gamma, \beta) \log \frac{p_{\beta}(\gamma)}{p_{\alpha + \beta}(\gamma)} \end{array}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Punch line

Finally:

$$
\frac{\mathcal{L}(\alpha,\beta)}{\mathcal{p}(\alpha+\beta)}=\frac{\mathcal{p}(\alpha)}{\mathcal{p}(\alpha+\beta)}D(\mathcal{p}_\alpha\|\mathcal{p}_{\alpha+\beta})+\frac{\mathcal{p}(\beta)}{\mathcal{p}(\alpha+\beta)}D(\mathcal{p}_\beta\|\mathcal{p}_{\alpha+\beta})
$$

- This is the Jensen-Shannon divergence of p_α from p_β
- \bullet Minimizing loss $=$ merging the pair of clusters whose context distributions are most similar