
Dependency parsing Brown clustering AV clustering

Dependency Parsing and Brown Clustering

Steven Abney

University of Michigan

2015 Mar 27

Dependency parsing Brown clustering AV clustering

Dependency parsing

Dependency parsing Brown clustering AV clustering

Problem Definition

Learning a dependency parser in a new language

Variant of grammatical inference
We know how to do supervised learning from a treebank

Treebanks

I know of TBs for 43 languages:
Arabic
Armenian, Ancient
Basque
Bulgarian
Catalan
Chinese
Czech
Danish
Dutch
English
English, Early Modern

English, Middle
English, Old
Estonian
Finnish
French
German
Gothic
Greek
Greek, Ancient
Hebrew
Hindi-Urdu

Hungarian
Icelandic
Indonesian
Italian
Japanese
Karuk
Korean
Latin
Polish
Portuguese
Portuguese, Medieval

Romanian
Russian
Slavonic, Old Church
Slovene
Spanish
Swedish
Thai
Turkish
Ugaritic
Vietnamese

But there are 6800 languages (Ethnologue)
Increasing interest from e.g. Google, DoD

Transfer: L1 treebank → parser → L2

Dependency parsing Brown clustering AV clustering

Dependency Trees

govr: 2 0 4 2
role: subj root det obj
pos: Pron V DT N
w: this is an example

id: 1 2 3 4

Dependency parsing Brown clustering AV clustering

Dependency-parsing task

Input L Output U Output
[1] this Pron 2 subj 2
[2] is V 0 root 0
[3] an DT 4 det 4
[4] example N 2 obj 2

Attachment Score = proportion correct

LAS, UAS

Dependency parsing Brown clustering AV clustering

“Transition-based” dependency parsing (Nivre)

Dependency parsers: transition-based, chart

“Arc-eager” operations (my variant):

LD: T is left dependent of N. Next must be Pop.
RD: N is right dependent of T . Next must be Shift.
Pop: remove T from stack.
Shift: move N from buffer to stack.

Transition = (configuration ⇒ configuration):

T N

Root

(is)

is

this

an example LD, Pop
=⇒

T N

Root

(is)

is

this

example

an

Dependency parsing Brown clustering AV clustering

Oracle = Classifier

Supervised training

Instance (feature vector) Label (next op)
buffer 0 form = example
buffer 0 lemma = example
buffer 0 cpos = N
buffer 0 fpos = NN
buffer 0 morph = sg
buffer 1 form = None
buffer 1 fpos = None
buffer 2 fpos = None
buffer 3 fpos = None
buffer 0 lc role = None
stack 0 form = an
stack 0 lemma = a
stack 0 cpos = D
stack 0 fpos = DT
stack 0 morph = None
stack 0 role = None
stack 1 fpos = VBZ

LD

Features are mostly features of words: form, lemma, cpos,
fpos, morph

Dependency parsing Brown clustering AV clustering

Eisner chart-parsing for dependencies (modified)

Edges and voids

Voids “hide” completed material

Bottom-up binary and unary combinations

Void + edge = right-spreading void
Edge + void = left-spreading void
Unary: void → edge

We can use CKY algorithm (n3); naive dep. chart parsing is n5

Dependency parsing Brown clustering AV clustering

General pattern

One terminal void for each covering edge

Spread rightward first (left dependents)
Then spread leftward (right dependents)
Create covering edge

Dependency parsing Brown clustering AV clustering

Edges & voids correspond to stack actions

Dependency parsing Brown clustering AV clustering

McDonald et al 2005: probabilistic version

Similar features to Nivre, but Eisner chart parsing

Tree score:

S =
∑
k

wk

∑
i

0,1︷ ︸︸ ︷
fk(gi , di)︸ ︷︷ ︸
ck

= w · c

Features fk(g , d) = features of g , d , and words around them
Positive-weighted features = good tree, negative = bad
Probability = exp(S)

Learning = determining weights wk

Dependency parsing Brown clustering AV clustering

Supervised learning

Classic approach is EM; compute-expensive but weak
performance

Alternative: error-driven update (perceptron, MIRA)

Initial weight vector w = 0
Parse a sentence; get k best parses Ti . Gold parse = G .
For each Ti 6= G : if S(Ti) ≥ S(G) then

w(t+1) ← w(t) + η[c(G)− c(Ti)]

Perceptron has fixed step size η, MIRA has adaptive step size

Averaging makes it more robust:

w← 1

N
(w(1), . . . ,w(N))

Dependency parsing Brown clustering AV clustering

Brown clustering

Dependency parsing Brown clustering AV clustering

Word clustering for dependency parsing

Sparse data problem

Feature values are often words, lemmas
Most words are rare: many words in test
never seen in training
Back off to groups of words: clusters

buffer 0 form = another
buffer 0 lemma = another
buffer 0 cpos = D
buffer 0 fpos = DQ
buffer 0 morph = sg
buffer 1 form = example
buffer 1 fpos = NN
buffer 2 fpos = None
buffer 3 fpos = None
buffer 0 lc role = None
stack 0 form = is
stack 0 lemma = be
stack 0 cpos = V
stack 0 fpos = VBZ
stack 0 morph = 3s
stack 0 role = root
stack 1 fpos = PP

Dependency parsing Brown clustering AV clustering

Brown clustering
HMMs with classes

Model is assignment of words to classes

Each word belongs to unique class:
classes are not hidden

EOS → 0
an → 1
example→ 2
is → 3
this → 1

1 3 1 2 0
this is an example EOS

p(text|model) = p(1|0) p(this|1) × p(3|1) p(is|3) × . . .

Choose model to maximize likelihood L = p(text|model)

Dependency parsing Brown clustering AV clustering

Simplifying the likelihood function

L = p(1|0) p(this|1)︸ ︷︷ ︸
α = 0
β = 1
x = this

× p(3|1) p(is|3)︸ ︷︷ ︸
α = 1
β = 3
x = is

× . . .

Group factors by α, β, x

L =
∏
α,β,x

[p(β|α) p(x |β)]ct(α,β,x)

Dependency parsing Brown clustering AV clustering

Simplifying the likelihood function

Taking the log makes it more tractable

` =
∑
α,β,x

ct(α, β, x)[log p(β|α) + log p(x |β)]

`/N =
∑
α,β,x

p(α, β, x)

[
log

p(α, β)

p(α)
+ log

p(β, x)

p(β)

]
Move p(β) and distribute

=
∑
α,β

p(α, β) log
p(α, β)

p(α) p(β)
+
∑
β,x

p(β, x) log p(β, x)

Dependency parsing Brown clustering AV clustering

Simplifying the likelihood function

Class is unique given word. Suppose x ’s class is α.

if β = α: p(β, x) = p(x)
if β 6= α: p(β, x) = 0

So: ∑
β

p(β, x) log p(β, x) = p(x) log p(x)

And:

`/N =
∑
α,β

p(α, β) log
p(α, β)

p(α) p(β)︸ ︷︷ ︸
I (A;B)

+
∑
x

p(x) log p(x)︸ ︷︷ ︸
H(X)

Choose classes to maximize I (A;B)

Dependency parsing Brown clustering AV clustering

How do we maximize I (A;B)?

Start off with every word in its own cluster

Consider merging two clusters α, β. Compute the resulting
value of I (A;B).

Choose the pair that gives the maximum new I (A;B).

Produces a hierarchical clustering

But how to do it efficiently?

Dependency parsing Brown clustering AV clustering

Maximize graph weight = sum of edge weights

Score = mutual information:

I =
∑
α,β

p(α, β) log
p(α, β)

p1(α) p2(β)︸ ︷︷ ︸
q(α,β)

Think of it as a graph

Nodes are clusters
Edges connect clusters that co-occur: p(α, β) > 0
Edge weight is q(α, β)
These are directed edges

Dependency parsing Brown clustering AV clustering

Undirected graph

Combine pairs of directed edges to make one undirected edge

Q(α, β) =

{
q(α, β) + q(β, α) if α 6= β
q(α, α) if α = β

Now:
I =

∑
α≤β

Q(α, β)

Dependency parsing Brown clustering AV clustering

An example

see spot run EOS
run spot run EOS
run run EOS
see jane EOS
jane run EOS
run jane EOS

I = 0.602

Dependency parsing Brown clustering AV clustering

Algorithm

The algorithm:

Build graph
For each pair of nodes (α, β), compute the cost (loss) of
merging α + β
Choose the minimum-cost pair and merge them
Update p, Q, etc. and repeat

Loss L(α, β)

Merging α + β cannot increase I . L(α, β) ≥ 0, small is good.
What is the effect of doing a merger?
How do we update loss matrix for other pairs, without
recomputing from scratch?

Dependency parsing Brown clustering AV clustering

Loss

Node weight s(α) =
∑
ν

Q(ν, α)

Merged-node weight S(α, β) =
∑
ν

Q(ν, α + β)

∆ = −s(α)− s(β) + Q(α, β)︸ ︷︷ ︸
dbl-counted

+S(α, β)

Dependency parsing Brown clustering AV clustering

Q(ν, α + β)

Q(ν, α + β) can be computed without actually creating a
node:

Q(ν, α + β) = q(ν, α + β) + q(α + β, ν)

q(ν, α + β) = p(ν, α + β) log
p(ν, α + β)

p1(ν) p2(α + β)

p(ν, α + β) = p(ν, α) + p(ν, β)

Dependency parsing Brown clustering AV clustering

Loss

∆ ≤ 0. Loss = −∆:

L(α, β) = s(α) + s(β)− Q(α, β)− S(α, β)

Maintain array s and matrix S , compute L on the fly.

Updating

Suppose we merge λ+ µ⇒ τ
No effect on Q(α, β)
What is the effect on s(α) and S(α, β)?

Dependency parsing Brown clustering AV clustering

∆s and ∆S

∆s(α) = Q(τ, α)− Q(λ, α)− Q(µ, α)

∆S(α, β) = Q(τ, α + β)− Q(λ, α + β)− Q(µ, α + β)

Dependency parsing Brown clustering AV clustering

Algorithm, final form

Create graph

Compute Q(α, β) for edges, s(α) for nodes
Co-edge (α, β) iff α and β share a neighbor
Compute S(α, β) for each co-edge

Main loop

Among co-edges, maximize s(λ) + s(µ)− Q(λ, µ)− S(λ, µ)
Pre-update:

s(α) = s(α)− Q(λ, α)− Q(µ, α)

S(α, β) = S(α, β)− Q(λ, α + β)− Q(µ, α + β)

Delete nodes λ and µ, add node τ . Compute Q(ν, τ) and s(τ).
Post-update:

s(α) = s(α) + Q(τ, α)

S(α, β) = S(α, β) + Q(τ, α + β)

Dependency parsing Brown clustering AV clustering

Attribute-value clustering

Dependency parsing Brown clustering AV clustering

Returning to tree scoring in dependency parsing

Tree score

Edge candidates (gi , di). Tree = subset | ∀ word has 1 govr
Edge has set of features: {k | fk(gi , di) = 1}.
vi is a bit vector whose k-th bit is fk(gi , di).
Tree score:

S =
∑
k

wk

∑
i

fk(gi , di)

=
∑
i

w · vi

Candidate-edge feature set:

order:dep-govr
d-form:dog
d-lemma:dog
d-cpos:N
g-form:barks
g-lemma:bark
g-cpos:V

...

Dependency parsing Brown clustering AV clustering

Attribute-value clustering

Usual approach: use plain text to get clusters

Alternative

Build clusters that are specific to parsing
Let’s include higher-order features, e.g.

role = subj
g-lemma = bark
d-lemma = dog

⇒ subj(bark,dog)

Which we view as

attribute: subj(bark,)
value: dog

Goal: simultaneous clustering of attributes and values

Generally applicable to instances represented as sets of AV
pairs

Dependency parsing Brown clustering AV clustering

Different generative model

Generating a single data point:

p(x , y) = p(α, β) p(x |α) p(y |β)

Log likelihood: group by α, β, x , y :

`/N =
∑

α,β,x ,y

p(α, β, x , y) log [p(α, β) p(x |α) p(y |β)]

=
∑

α,β,x ,y

p(α, β, x , y)

[
log

p(α, β)

p(α) p(β)
+ log p(x , α) + log p(y , β)

]

=
∑
α,β

p(α, β) log
p(α, β)

p(α) p(β)︸ ︷︷ ︸
I (A;B)

+
∑
x

p(x) log p(x)︸ ︷︷ ︸
−H(X)

+
∑
y

p(y) log p(y)︸ ︷︷ ︸
−H(Y)

Same bottom line: seek classes that maximize I (A;B)

Once we have the graph, the algorithm is the same

Dependency parsing Brown clustering AV clustering

Bigraph

see spot run EOS
run spot run EOS
run run EOS
see jane EOS
jane run EOS
run jane EOS

No loops

No edges between atts or
between values

Dependency parsing Brown clustering AV clustering

Context distributions

Define context distribution pα(γ) = p(γ,α)
p(α)

Distribution over contexts of α.

Since p(α, γ) = 0 in the bigraph case, we have:

Q(α, γ) = q(γ, α)

Hence:

s(α) =
∑
γ

p(γ, α) log
p(γ, α)

p(γ) p(α)

=
∑
γ

p(γ, α) log
pα(γ)

p(γ)

Dependency parsing Brown clustering AV clustering

Context distributions

Can also be defined for s(α + β):

pα+β(γ) =
p(γ, α + β)

p(α + β)

Hence:

s(α + β) =
∑
γ

p(γ, α + β) log
p(γ, α + β)

p(γ) p(α + β)

=
∑
γ

p(γ, α) log
pα+β(γ)

p(γ)
+
∑
γ

p(γ, β) log
pα+β(γ)

p(γ)

Dependency parsing Brown clustering AV clustering

Loss

Since the graph is now a bigraph, L simplifies (slightly):

L(α, β) = s(α) + s(β)−
=0︷ ︸︸ ︷

Q(α, β)−s(α + β)

Using our previous results:

s(α) + s(β)
∑

g p(γ, α) log pα(γ)
p(γ) +

∑
g p(γ, β) log

pβ(γ)
p(γ)

− s(α + β)
∑

g p(γ, α) log
pα+β(γ)
p(γ) +

∑
g p(γ, β) log

pα+β(γ)
p(γ)

= L(α, β)
∑

g p(γ, α) log pα(γ)
pα+β(γ)

+
∑

g p(γ, β) log
pβ(γ)

pα+β(γ)

Dependency parsing Brown clustering AV clustering

Punch line

Finally:

L(α, β)

p(α + β)
= p(α)

p(α+β)D(pα||pα+β) + p(β)
p(α+β)D(pβ||pα+β)

This is the Jensen-Shannon divergence of pα from pβ

Minimizing loss = merging the pair of clusters whose context
distributions are most similar

	Dependency parsing
	Brown clustering
	AV clustering

