
CNF as Semantic Metalanguage
Steven Abney & Ezra Keshet, University of Michigan

1 Introduction

First Order Predicate Calculus (FOPC) is often used as a semantic meta-
language, but its syntax differs from that of natural language in several ways:

• “Normal” Quantifiers:

(1) a. S

DP1

every farmer

S

DP2

a donkey

S

t1 VP

owns t2

b.

∀x →

farmer′(x) ∃y ∧

donkey′(y) owns′(x, y)

• Extended-Scope Quantifiers:

(2) a. A man entered. He was flustered.
b. ∃x. [man′(x) ∧ entered′(x) ∧ flustered′(x)]

(3) (But: No/Every man entered. #He was flustered.)

(4) a. Every player choses a token. It goes on square one.
b. ∀p∃t . . . [chooses′(p, t) ∧ goes-on-square-one′(t)

• Extended-Scope Quantifiers sometimes “invert”:

(5) a. Every farmer who owns a donkey beats it.
b. ∀f∀d . . . beats′(f, d)

(6) a. Either John doesn’t own a donkey, or he keeps it very quiet.
b. ∀d . . . [¬owns′(j, d) ∨ keeps-quiet′(j, d)

1.1 Introducing CNF

CNF is a quantifier-free subset of predicate calculus. It is the standard repre-
sentation used for automated reasoning systems, and it is inferentially equiva-
lent to FOPC. The following diagram labels the parts of the CNF expression
[A(c) ∨ ¬B(f(x))] ∧ C(x) with predicates A, B, C, variable x, constant c, and
function f :

1

(7)

clause︷ ︸︸ ︷
[

literal︷ ︸︸ ︷
A︸︷︷︸

predicate

(c︸︷︷︸
term

)

︸ ︷︷ ︸
atomic formula

∨
literal︷ ︸︸ ︷

¬ B︸︷︷︸
predicate

(f(x)︸︷︷︸
term

)

︸ ︷︷ ︸
atomic formula

]∧

clause︷ ︸︸ ︷
literal︷ ︸︸ ︷

C︸︷︷︸
predicate

(x︸︷︷︸
term

)

︸ ︷︷ ︸
atomic formula

For any CNF expression φ, let x1, . . . , xn be the variables that occur in φ, and let
ẏ1, . . . , ẏm be the Skolem functions that occur. Then φ is interpreted identically
to the (second-order) predicate calculus formula in (8):

(8) ∃ẏ1 . . . ∃ẏm ∀x1 . . . ∀xn φ.

2 CNF as Semantic Metalanguage

(9) a. S

DP1

every farmer

S

DP2

a donkey

S

t1 VP

owns t2

b. ∨

¬farmer′(x)
∧

donkey′(ẏ(x)) owns′(x, ẏ(x))

The main intuition behind our semantic interpretation of LF trees such as (9a)
is that they are homomorphic to (the parse tree of) a CNF expression. Certain
LF terminal nodes denote literals, which are combined at higher node levels
via either conjunction or disjunction in a predictable way. The variables and
Skolem functions are introduced using an indexing system that slightly expands
on the numerical indexing shown here.

2.1 Semantic types

An extended type has three parts: a basic type τ ∈ {0, C,∀,∃,∧,∨}, governing
how nodes combine; an index i, governing predicate-argument relationships;
and a polarity p ∈ {+1,−1}. (We generally notate negate types with a line over
them: τ .)

Basic types. The basic types correspond to the mode of combination used
when interpreting the node:

2

Node Basic Type
Literals: nouns, verbs, adjectives, prepositions L
Uninterpreted nodes: all other terminal nodes 0
Copy nodes (share a denotation with one child) C
Universally quantified DPs ∀
Existentially quantified DPs ∃
Disjunction ∨
Conjunction ∧

Polarity. Matrix sentences have positive polarity, and polarity is inherited
downward with two exceptions:

• In a determiner phrase [DP D NP] in which the determiner is a universal
(every, all, each, . . .), the polarity of the NP is opposite to that of the DP.

• In a negation [S not S], the two S nodes have opposite polarity.

Indices. An index term may be a variable, a Skolem term consisting of a
Skolem function and its arguments, or a name (individual constant). An index
is a tuple of index terms. For example:

• 〈 〉 – an empty index. Used for uninterpreted nodes and complete clauses
or sentences.

• 〈u〉 – a single index term. Used for one-place predicates, such as simple
nouns and intransitive verbs.

• 〈u, v〉 – used for two-place predicates, such as transitive verbs.

• 〈u, v, w〉 – used for three-place predicates, such as ditransitive verbs.

Tuples of any length are allowed. We often omit the angle brackets when writing
indices. For example, the extended type Cx has negative polarity and index 〈x〉.

2.2 The interpretation function defined

The semantic types and interpretations of nodes are determined by four sets of
rules: a semantic lexicon, a set of root constraints, the interpretation rules of
section 2.3, and the indexing constraints of section 2.4.

The semantic lexicon determines the semantic type of each word. We do
not give an explicit listing, but the general principles are very simple. Content
words (nouns, non-copular verbs, adjectives, and prepositions) have type L, and
all other words have type 0. The lexicon also determines a CNF predicate ω′

corresponding to each content word ω.
The root constraints are also simply stated: the root node of a matrix sen-

tence must have positive polarity and its index must be 〈 〉.

3

2.3 Rules of interpretation

In the rules (and elsewhere), the notation α : τi represents a node α whose
semantic type is τi. We use variables u, v, w for individual index terms, and we
use i and j for indices.

2.3.1 Terminal nodes

Literals. In the following rules, ω must be a terminal node.

(10) [[ω :Lu1,...,un
]] = ω′(u1, . . . , un) [[ω :Lu1,...,un

]] = ¬ω′(u1, . . . , un)

Thus, a content word ω with an index i comprising n index terms denotes a CNF
literal whose predicate is the value ω′ in the lexicon for ω and whose argument
list is identical to i. The cases n = 1 and n = 0 are permitted.

Other terminal nodes. For any terminal node α whose type is not L, the
interpretation [[α]] is undefined. Such nodes may, however, contribute to the
interpretation less directly.

2.3.2 Nonterminal nodes

The rules for nonterminals are written so that, in any local configuration, only
one rule is applicable, and the choice of rule is determined by the nature of the
children. The linear order of a node’s daughters is not important and may be
reversed in the rules below. Unless otherwise specified, the variables σ and τ
stand for any basic type except 0.

Copy. The following rules apply to non-branching nodes.

(11) [[[Ci α :τi]]] = [[α]] [[[Ci
α :τ i]]] = [[α]]

The index of the child is copied to the parent. Child and parent also share
polarity and denotation.

In the following rules, α is an uninterpreted word, with no index, such as a
copula (discounting any tense interpretion on the copula for the time being).

(12) [[[Ci α :0 β :τi]]] = [[β]] [[[Ci
α :0 β :τ i]]] = [[β]]

Again, the parent shares index, polarity, and denotation with one child – the
one not of type 0.

Negation. In these rules, the first child must be negation, represented here
as not. The position of negation can be the result of operator raising at LF.

(13) [[[Ci not α :τ i]]] = [[α]] [[[Ci
not α :τi]]] = [[α]]

The only effect of not is to flip the polarity of its complement.

4

Application. These rules correspond roughly to Functional Application. In
these rules, β must be a referential DP—a proper noun, a pronoun, or a trace.
We use 〈i, v〉 as a shorthand for 〈u1, . . . , un, v〉 where i = 〈u1, . . . , un〉.

(14) [[[Ci α :σi,v β :0v]]] = [[α]] [[[Ci
α :σi,v β :0v]]] = [[α]]

In words, a predicate α with a non-empty index may “discharge” its last index
term by combining with an uninterpreted node β having a matching index term
as its entire index. The resulting node has the same interpretation and polarity
as the predicate, but its index list is one term shorter, missing this last item.

Abstraction. Next, we have rules akin to Predicate Abstraction. Here, α
must be a relative pronoun.

(15) [[[Cu
α :0u β :τ]]] = [[β]] [[[Cu

α :0u β :τ]]] = [[β]]

In words, a relative pronoun (of basic type 0) may combine with a node having
an empty index to form a node having a singleton index. (Note that the lack
of index on τ is significant.) The relative pronoun α and its parent—which
is usually a relative clause—share the same index. The other node β and the
parent share a denotation.

Modification. The next rules correspond to Predicate Modification. In these
rules, the children may not be quantified DPs. That is, in these rules σ and τ
may be any basic type except 0, ∀, or ∃.

(16) [[[∧i
α :σi β :τi]]] = [[α]] ∧ [[β]] [[[∧i

α :σi β :τ i]]] = [[α]] ∨ [[β]]

In words, two nodes with matching polarity and indices may combine to form
a node of type ∧ with the same polarity and index as the children. The inter-
pretation of this mother node is the conjunction of the interpretations of the its
children if is positive and the disjunction if it is negative.

Quantifiers. A set of syncategorematic rules are required to capture quan-
tificational DPs. In the following, α must be a universal quantificational deter-
miner such as every, all, each, etc., and ε must be an existential quantificational
determiner such as a(n), some, etc.

(17)
[[[∃u

ε :0u γ :τu]]] = [[γ]] [[[∃u
ε :0u γ :τu]]] = [[γ]]

[[[∀u
α :0u γ :τu]]] = [[γ]] [[[∀u

α :0u γ :τu]]] = [[γ]]

Existentially quantified DPs carry the basic type ∃ while universally quantified
DPs carry ∀. With existentials, the parent and both children share the same
polarity; but universal quantificational determiners flip the polarity of their
complements. In all cases, the parent and both children share a common index,
which must consist of a single index term. The parent always shares a denotation
with the NP complement, γ.

5

Quantification. Next we need rules to combine quantificational DPs with
their nuclear scope.

(18)
[[[∧ β :∃i γ :τ]]] = [[β]] ∧ [[γ]] [[[∧ β :∃i γ :τ]]] = [[β]] ∨ [[γ]]

[[[∨ β :∀i γ :τ]]] = [[β]] ∨ [[γ]] [[[∨ β :∀i γ :τ]]] = [[β]] ∧ [[γ]]

A DP of basic type ∃ has a type-∧ parent (a conjunction) while a DP of basic
type ∀ has a type-∨ parent (a disjunction). This basic type, plus the polarity,
determines whether the DP combines with with its complement via logical dis-
junction or logical conjunction. Note that the parent and the second child must
have an empty index.

2.4 Indexing constraints

We define the scope of a quantificational DP to be the set of nodes dom-
inated by its parent. Thus the scope of DP in (19) includes both NP and S:

(19) S

DP

D NP

S

We assume a fixed enumeration of variables x1, x2, . . . and a fixed enumeration
of Skolem functions ẏ1, ẏ2, We also enumerate the quantificational DPs in a
sentence in preorder as DP1, . . . ,DPn.

The following indexing constraints determine the indices for DP nodes, and
those indices are propagated through the tree by the interpretation rules above:

• The index of a proper noun ω is 〈ω′〉. ω′ is an individual constant, deter-
mined by the semantic lexicon.

• The index of a trace or pronoun must be the same as the index of its
antecedent.

• If DPt has signed type ∀ or ∃, then its index is 〈xt〉 – i.e., a singleton
variable.

• Otherwise the index of DPt is of form 〈ẋt(. . .)〉 – i.e., a Skolem function
applied to an argument list –, and the arguments “. . .” consist of the
indices of all DPs of type ∀/∃ that take scope over DPt.

We leave open whether these constraints are enforced via syntactic or se-
mantic means, or some combination of the two.

6

2.5 Examples

(20) S:C

John:0j VP:C〈j〉

likes:L〈j,m〉 Mary:0m

(21) S:∨

DP:∀x

every:0x NP:Cx

girl:Lx

S:∧

DP:∃ẏ(x)

a:0ẏ(x) NP:Cẏ(x)

boy:Lẏ(x)

S:C

t:0x VP:C〈x〉

likes:L〈ẏ(x),x〉 t:0ẏ(x)

A few items to note:

• The top node has a type of ∨, meaning that its two daughters are combined
via disjunction.

• The second highest S has type ∧, meaning that its daughters are combined
via conjunction.

• The N girl and its parent NP have a negative polarity, due to the NP
combining with a universal quantifier.

• The index on boy and its surrounding nodes is ẏ(x): it is a Skolem function
due to the existential quantifier and its argument list comprises the only
outscoping variable, x.

• The index on each of the two traces matches its antecedent. Thus, the
original sentence for this tree was “every girl likes a boy” and not “A boy
likes every girl.”

7

(22) S⇒¬girl′(x) ∨ [boy′(ẏ(x)) ∧ likes′(x, ẏ(x))]

DP⇒¬girl′(x)

every NP⇒¬girl′(x)

girl⇒¬girl′(x)

S⇒boy′(ẏ(x)) ∧ likes′(x, ẏ(x))

DP⇒boy′(ẏ(x))

a NP⇒boy′(ẏ(x))

boy⇒boy′(ẏ(x))

VP⇒ likes′(x, ẏ(x))

t VP⇒ likes′(x, ẏ(x))

likes⇒ likes′(x, ẏ(x)) t

Such an annotated tree is quite repetitious. In fact, it is enough to interpret
the L nodes and to connect them by translating the nodes with types ∧, ∨, ∧,
∨ to connectives (∧, ∨, ∨, ∧, respectively):

(23) S: ∨

DP:∀x

every:0x NP:Cx

girl:Lx
⇓

¬girl′(x)

S: ∧

DP:∃ẏ(x)

a:0ẏ(x) NP:Cẏ(x)

boy:Lẏ(x)
⇓

boy′(ẏ(x))

S:C

t:0x VP:C〈x〉

likes:L〈x,ẏ(x)〉
⇓

likes′(x, ẏ(x))

t:0ẏ(x)

One can then read off the interpretation simply by reading the boxed elements:
¬girl′(x) ∨ [boy′(ẏ(x)) ∧ likes′(x, ẏ(x))]

8

(24) S: ∧

DP:∀x

all:0x CP:Cx

that:0x S:C

t:0x VP:Cx

glitters:Lx
⇓

¬glitters′(x)

S:C

t:0x VP:Cx

is:0 gold:Lx
⇓

gold′(x)

The translation, ¬ glitters′(x)∨ gold′(x) roughly means that for every thing x,
either x does not glitter or x is gold.

Now let us consider what happens when we negate the sentence: “all that
glitters is not gold.” This of course has two readings; the following LF assigns
wide scope to the negation.

(25) S:C

not:0 S: ∧

DP:∀ẏ

all:0ẏ CP:Cẏ

that:0ẏ S:C

t: ẏ VP:Cẏ

glitters:Lẏ
⇓

glitters′(ẏ)

S:C

t:0 : ẏ VP:C ẏ

is:0 gold:Lẏ
⇓

¬gold′(ẏ)

9

There are a few points to note.

• The basic type of a node combining a universally quantified DP with its
sister is ∨, but it is inverted because the node is negated.

• The negation spreads through the whole tree, except that it is canceled
by a second negation on the sibling of “all.”

• The semantic translation is glitters′(ẏ) ∧ ¬gold′(ẏ) which can be read
roughly as “(there is) a thing ẏ such that ẏ glitters, but ẏ is not gold.”

(26) S: ∨

DP:∀x

every:0x NP: ∧
x

donkey:Lx
⇓

¬donkey′(x)

CP:Cx

that:0x S:C

t:0x VP:Cx

brayed:Lx
⇓

¬brayed′(x)

S:C

John:0j VP:Cj

owns:L〈j,x〉
⇓

owns′(j, x)

t:0x

Points to note:

• The basic type for the NP is ∧. Here, it is inverted by the negation.

• The relative pronoun has moved from the lower subject position, leaving
a co-indexed trace.

• The CP is a predicate, and it shares an argument with the N donkey,
through a process similar to predicate modification.

• The transitive verb owns here is treated as a two-place predicate, taking
x from tx and a constant such as j from John .

• The final CNF is ¬donkey′(x) ∨ ¬brayed′(x) ∨ owns′(j, x).

10

(27) S: ∨

DP:∀x

every:0x NP: ∧
x

farmer:Lx
⇓

¬farmer′(x)

CP:Cx

that:0x S: ∧

DP:∃y

a:0y NP:Cy

donkey:Ly
⇓

¬donkey′(y)

S:Cy

t:0x VP

owns:L〈x,y〉
⇓

¬owns′(x, y)

t:0y

S:C

t:0x VP:Cx

beats:L〈x,y〉
⇓

beats′(x, y)

t:0y

The highest S type is ∨ because it involves quantification by a universal. The
basic type of the S in the RC is ∧ because it involves quantification by an
existential. However, the S is negated, yielding a disjunction.

Otherwise, the only thing that is new is the pronoun, which has been marked
(via co-indexation) as having the “donkey” noun phrase as antecedent. This—
rather magically—gives the correct interpretation:

(28) ¬farmer′(x) ∨ ¬owns′(x, y) ∨ beats′(x, y)

2.6 Shorthand

Consider “every dog that chases every cat is happy.” Switching to LF word
order and adding some annotations, this becomes:

(29) everyx[dog ∧that [everyẏ[cat]∨ chases]]∨ is happy

Now we can read off the interpretation by applying the predicates to the correct
arguments, canceling double negations, and flipping the connectives ∧ and ∨.
Grouping follows the LF tree structure:

(30) ¬dog′(x) ∨ (cat′(ẏ) ∧ ¬chases′(x, ẏ)) ∨ happy′(x).

Here is an example with wide-scope “not.”

11

(31) a. every dog that barks does not bite

b. not [everyẋ [dog ∧that [barks]]∨ bites]
c. dog′(ẋ) ∧ barks′(ẋ) ∧ ¬bites′(ẋ)

3 Anaphora: CNF vs. DRT/DPL

One of the main motivations for Discourse Representation Theory (Kamp and
Reyle 1993), and its compositional cousin Dynamic Predicate Logic (Groe-
nendijk and Stokhof 1991), is the treatment of pronouns – in particular, cross-
sentential anaphora and intra-sentential donkey anaphora.

3.1 Basic intra-sentential anaphora

Two co-indexed nodes will have the same referent in this system, whether this
referent is derived via a constant, or via a universal or Skolem variable:

(32) a. everyx[dog]∨ loves himselfx → ¬dog′(x) ∨ loves′(x, x)
b. someẋ[dog]∧ loves himselfẋ → dog′(x) ∧ loves′(x, x)
c. Johnj loves himselfj → loves′(j, j)

Even the distinction between bound and referential readings of pronouns can
be captured via the abstraction rule, if names are given predicate meanings:

(33) 〈someẋ〉 [John]∧ prox [loves himselfx] → John′(ẋ) ∧ loves′(x, x)

3.2 Discourse (inter-sentential) anaphora

CNF databases are designed to be added to incrementally. Thus, the short
discourse “a donkey brayed; it was hungry” would yield the following CNF
formulas, assuming the following indexing:

(34) a. aẋ[donkey]∧ brayed→ donkey′(ẋ) ∧ brayed′(ẋ)
b. itẋ was hungry→ hungry′(ẋ)

Sentences are implicitly conjoined, and so the final CNF formula is donkey′(ẋ)∧
brayed′(ẋ)∧hungry(ẋ). This formula is interpreted by existentially quantifying
over the zero-arity Skolem function ẋ, yielding the meaning “there was a donkey
that brayed and was hungry.”

DPL explicitly rules out sequences such as the following:

(35) Every donkeyi brayed. *Iti was hungry.

At first glance, it may seem as the the CNF system incorrectly allows such
sequences. For instance, the sentence in (35) might come out as follows in CNF:

(36) a. everyx[donkey]∨ brayed→ ¬donkey′(x) ∨ brayed′(x)
b. itx was hungry→ hungry′(x)

12

This yields a very odd meaning for the discourse:

(37) (¬donkey′(x) ∨ brayed′(x)) ∧ hungry′(x)

Basically: “every donkey brayed, and everything was hungry.” Notice, though,
that this is equivalent to:

(38) (¬donkey′(x) ∨ brayed′(x)) ∧ hungry′(y)

In other words, there is no connection conveyed between being a (braying)
donkey and being hungry; the only contribution that the universal quantifier
every donkey makes towards the interpretation of the pronoun it is to make it
a universal, rather than a Skolem, variable.

We therefore propose a rule to prohibit such cases (cf. Prohibition Against
Coreference (PACO) due to Büring (2005) and other conditions):

(39) Prohibition against Vacuous Binding: A pronoun α in a discourse
φ may not have as its index a variable σ if there is another variable σ′

such that the discourse φ′ only differing from φ in that ασ is replaced
by ασ′ is such that [[φ′]] = [[φ]].

This prohibition also rules out certain illicit cases where the quantifier and
pronoun appear in the same sentence:

(40) One of his1 friends likes every1 boy.

(41) S

DPẏ

one of hisi friends

VP

DPx

every boy

VP

tẏ VP

likes tx

This sequence is not ruled out by any syntactic binding condition, since the
coindexed his and every boy do not c-command one another. Furthermore, it
does not run afoul of any prohibition against crossover, since the two items
are in their surface order. However, such an indexing is undesirable, since the
meaning derived would be something like the following:

(42) friend-of′(ẏ, x) ∧ (¬boy′(x) ∨ likes′(ẏ, x))

In other words, there is a someone ẏ who is friends with everyone, and ẏ likes
every boy. (42) is prohibited by (39), though, since the variable x in the first
clause could be replaced by another variable without changing the meaning of
the whole expression.

13

3.3 Donkey anaphora

(43) a. every farmer who owns a donkey beats it
b. everyx[farmer ∧who [ay [donkey]∧ owns]]∨ beats ity
c. ¬farmer′(x) ∨ ¬donkey(y) ∨ ¬owns′(x, y) ∨ beats′(x, y)

Problem? It has been proposed that donkey sentences have two different
readings: a strong reading wherein, e.g., every farmer beats every donkey s/he
owns and a weak reading wherein, e.g., each farmer need only beat one of his/her
donkeys in order for the sentence to be true.

3.4 Negation, Disjunction, and Universal Quantification

The DPL definitions for negation, disjunction, and universally quantified sen-
tences were designed to block existentials from scoping beyond a certain point:

(44) a. John doesn’t own a cari. *Iti’s in his driveway.
b. Every farmer who owns a donkeyi beats iti. *Iti is very stubborn.
c. *John owns a cari or iti’s in his driveway.

CNF correctly rules out these first two cases via the Prohibition against Vacuous
Binding defined in (39) above. The analysis for (44a) goes as follows:

(45) a. [aẋ [car]∧[Johnj owns tẋ]] ∧[Itẋ is in his driveway]
b. (¬car′(x) ∨ ¬owns′(j, x)) ∧ in-driveway′(x)

This final formula runs afoul of the Prohibition against Vacuous Binding, since
the last clause in-driveway′(x) could well have used any universal variable, as
in in-driveway′(y) instead of in-driveway′(x). As for (44b):

(46) a. [everyx [farmer ∧who [ay [donkey]∧ owns]]∨ beats ity]
∧[ity is stubborn]

b. (¬farmer′(x)∨¬donkey′(y)∨¬owns′(x, y)∨beats′(x, y))∧stubborn′(y)

Once again, the last clause of the formula violates the Prohibition against Vac-
uous Binding, since stubborn′(y) might well have been written stubborn′(z)
without altering the truth conditions.

The case in (44c) is not as clearly infelicitous as it seems at first glance,
though. For instance, consider the following disjunctions, which sound fine
despite exhibiting a scoping that is illegal under the rules of DPL:

(47) a. John bought a cari, or perhaps he stole iti
b. John bought a cari, or Mary bought iti
c. A dogi ate our dinner, or at least iti ate most of our dinner.

And, in fact, the original example (44c) improves (slightly) in the following
scenario:

14

(48) Imagine that John always parks his car in his garage. However, he has
been trying to sell the car, and you know that he will leave it out in the
driveway for the seller to pick it up just in case he has successfully sold
it. Thus, either John (still) owns a car, or he has left it in his driveway.

3.5 The Limits of DPL

The strict rules of DPL quickly run into problems in cases quite similar to those
given above, as pointed out by Groenendijk and Stokhof (1991) themselves:

(49) a. Either there isn’t a bathroomi here or iti’s in a funny place.
b. Every player chooses a tokeni. Iti goes on square one.

The simplest formulation of DPL predicts these sentences to sound odd – since
they involve scoping out of negation, disjunction, and/or a universally quantified
sentence – but they are actually entirely acceptable. They actually fall out
beautifully from the CNF system without any further definitions. For (49a):

(50) a. [There isn’t [ax[bathroom]∧here]] or∨[itx is in a funny place]
b. ¬bathroom′(x) ∨ ¬here′(x) ∨ in-funny-place′(x)

Since the existential a bathroom is negated, it denotes a universal variable. And,
a negated universal variable in one clause of a disjunction is equivalent to the
interpretation of a universal quantifier (cf. every/any bathroom here is in a
funny place.).

And for (49b):

(51) a. everyx[player]∨aẏ(x)[token]∧ tx chooses tẏ(x)
∧[itẏ(x) goes on square one]

b. [¬player′(x) ∨ [token′(ẏ(x)) ∧ chooses′(x, ẏ(x))]] ∧
goes-on-sq-one′(ẏ(x))

goes-on-sq-one′(ẏ(x)) means that for all x, ẏ(x) goes on square one, where it
has already been established for all players p that ẏ(p) is a token.

4 Quantification in a quantifier-free language

4.1 Definite determiners and presuppositions

Under a definition due to Russell (1905), “The red dog barked” comes out as:

(52) (¬red′(x) ∨ ¬dog′(x) ∨ x = ẏ) ∧ barked′(ẏ)

In other words, there is a unique red dog, ẏ is that dog, and ẏ barked. Such
an interpretation could be achieved via the rules in (53). Note that the has a
complex index comprising one variable and one Skolem function application.

(53) [[[∃v
the :0〈u,v〉 γ :τu]]] = ([[γ]] ∨ u = v)

[[[∃u
the :0〈u,v〉 γ :τv]]] = ([[γ]] ∧ u 6= v)

15

This analysis makes the into a special kind of existential determiner that flips
the polarity of its complement. Negative sentence “the red dog didn’t bark”
comes out as:

(54) (red′(ẋ) ∧ dog′(ẋ) ∧ ẋ 6= y) ∨ ¬barked′(y)

In other words, if there is a unique red dog y, then y didn’t bark.
However, most modern semantic theories hold that the English sentence

actually presupposes it. But what is a presupposition but a query against prior
knowledge? Such queries are simple to do in a CNF question-answering system,
which is designed to give answers to questions posed as CNF formulas including
a special predicate, such as Ans:

(55) “Who is the red dog?” = (¬red′(x) ∨ ¬dog′(x) ∨ x = ẏ) ∧Ans(ẏ)

A definition of the based on this concept could be designed assuming a discourse
database D and a question-answering operator `. The following are special
combination rules where the parent node is still type 0 and hence technically
uninterpreted:

(56) [0v the :0u,v γ :τu] and [0v the :0u,v γ :τu] are allowed
if D ` ([[γ]] ∨ u = v)

Potential Problems.

• “The farmer who owns a donkey fed it.” If “a donkey” is only evaluated
in the presupposition, then is it available for future reference? Also, since
the NP is negated in the presupposition, “it” will come out as universal:
“the farmer who owns a donkey fed all of his donkeys.” This might be
OK, but it is a bit odd. Maybe [the NP] should reiterate the material
in the presupposition, for these reasons – but should the reiteration be
positive [NPẋ ∧ VPẏ] or negative [¬NPy ∨ VPy]?

• What about plural definites [the NPs]? Do they need to be ALL and
ONLY the satisifiers of NPs?

4.2 Plurals

In order to capture plurals in the CNF system, we will have to axiomatize set
theory, and allow sets to be individuals in our domain. Many of our definitions
might not need to change. For instance, some dogs could come out as dogs′(ẋ),
but this time ẋ will be an individual representing a set of dogs. However,
something more is needed to handle other simple numeric indefinite determiners.
For a first pass, we consider determiners such as two predicates over sets, and
revise our existential quantification rules accordingly:

(57) [[[∃u ε :Lu γ :τu]]] = [[ε]] ∧ [[γ]] [[[∃u
ε :Lu γ :τu]]] = [[ε]] ∨ [[γ]]

16

Note that these are now identical to the Modification rules – the only difference
comes in the indexing constraints on a quantificational determiner. Some sample
definitions for determiners are given below:1

(58) a. a′ = one′ = λX.|X = 1|
b. two′ = λX.|X = 2|
c. more-than-three′ = λX.|X > 3|

(59) a. Two dogs fought.
b. two∧ẋ [dogs]∧ fought
c. |ẋ = 2| ∧ dogs′(x) ∧ fought′(ẋ)

(60) a. More than three dogs fought.
b. [more than three]∧ẋ [dogs]∧ fought
c. |ẋ > 3| ∧ dogs′(ẋ) ∧ fought′(ẋ)

Distributive readings require a distributive operator that acts like a universal
quantifier over the members of a set:

(61) [[[∧u
Dist :L〈u,v〉 γ :τv]]] = u /∈ v ∨ [[γ]]

[[[∧v
Dist :L〈v,v′〉 γ :τ ′v]]] = v ∈ v′ ∧ [[γ]]

It receives its first index term via an index constraint and its second matches
its parent. Next, we need a structure like the following:

(62) S:∧

DP:∃ẋ

two:Lẋ NP:Cẋ

boys:Lẋ

S:C

t:0ẋ S:∨ẋ

Dist:L〈y,ẋ〉 S:Cy

proy S:∧

DP:∃ẏ

a piano

S:C

t:0y VP:C〈y〉

lifted:L〈y,ẏ〉 t:0ẏ

1A more nuanced analysis might give a “≥ 2” meaning to two and derive the “exactly two”
reading via implicature.

17

Then, the two different reading of the sentence “two boys lifted a piano” are
given as follows:2

(63) a. Two boys lifted a piano (together).
b. two∧ẋ [boys]∧ a∧ẏ [piano]∧ tẋ lifted tẏ
c. |ẋ| = 2 ∧ boys′(ẋ) ∧ |ẏ| = 1 ∧ piano′(ẏ) ∧ lifted′(ẋ, ẏ)

(64) a. Two boys (each) lifted a piano
b. two∧ẋ [boys]]∧ tẋ[Dist〈y,ẋ〉]

∨a∧ż [piano]∧ ty lifted tż
c. |ẋ| = 2 ∧ boys′(ẋ) ∧ y /∈ ẋ ∨ (|ż| = 1 ∧ piano′(ż) ∧ lifted′(y, ż))

Problem: What if there is a Skolem in the subject DP:

(65) 10 boys who made 2 sandwiches (each) left them on the counter.

4.3 Generalized Quantifiers

There is no meaning for most that can make (66) capture the correct truth
conditions for “most dogs bark”:

(66) most′(σ, σ′) ∧/∨ dogs′(σ) ∧/∨ bark′(σ′)

4.4 Every as Set-denoting

Unembedded every-DPs always allow a plural pronoun to refer back to them:

(67) Every student failed. They didn’t study enough.

5 Remaining Issues

5.1 Telescoping

Roberts (1987, 1989):

(68) Each candidatei approached the stage (one by one). Hei shook the
dean’s hand and returned to hisi seat.

(69) Every runneri took hisi mark (at the same time). Hei put hisi hand to
the track and got ready to race.

These cases seem to involve the illegal co-indexation of a (positive-context)
universal over two sentences. The closest we could come to capturing these sen-
tences with pure quantification over individuals is as follows (where [[candidate]]
= C, [[approached the stage]] =A, [[shook the dean’s hand]] =H, [[returned to one’s seat]
] = S, [[runner]] = R, [[took one’s mark]] = M , [[put one’s hand to the track]] =
P , and [[got ready to race]] = G):

(Cx ∨Ax) ∧Hx ∧ Sx
2Technically, there is also a third reading, where the two boys each lift the same piano on

different occasions.

18

(Rx ∨Mx) ∧ Px ∧Gx
Both of these formulas violate the Prohibition against Vacuous Binding. In
addition, they do not actually capture the meaning of the discourses (68) and
(69), since they assert (among other things) that every individual shook the
dean’s hand, and every individual got ready to race.

5.2 Every-DPs that cannot be antecedents

Quantifiers whose determiner is every represent universal variables in positive
contexts and Skolem variables in negative contexts in the CNF system. This
suggests that every-DPs in negative contexts ought to be suitable antecedents
for pronouns. However, this does not seem to be the case. Consider:

(70) a. Every girl that answered every1 question was rewarded.
b. *It1 wasn’t even the trick question, usually.

The CNF for (70a) is:
Gx ∨ (Qẏ ∧Axẏ) ∨Rx

(71) a. Every player who is missing a suit1 must wait until he gets it1.
b. ??Every player that does not hold every suit1 must wait until he gets

it1.

The CNF for these two sentences is:

(72) a. Px ∨ Sy ∨Mxy ∨Wxy
b. Px ∨ Sy ∨Hxy ∨Wxy

Despite these two issues, the CNF system does not fall prey to the many the
issues raised against E-type analyses , illustrated by the following minimal pair:

(73) a. If one of the ten marbles is missing, it is probably under the table
b. *If nine of the ten marbles are accounted for, it is probably under

the table

There is an antecedent for the pronoun it in (73a), but not in (73b), and this
fact is enough to account for the difference in acceptability.

References

Büring, D.: 2005, Binding theory, Cambridge Univ Pr.

Groenendijk, J. and Stokhof, M.: 1991, Dynamic predicate logic, Linguistics
and philosophy 14(1), 39–100.

Kamp, H. and Reyle, U.: 1993, From discourse to logic: Introduction to mod-
eltheoretic semantics of natural language, formal logic and discourse repre-
sentation theory, Vol. 42, Kluwer Academic Dordrecht,, The Netherlands.

19

Roberts, C.: 1987, Modal subordination, anaphora, and distributivity, PhD the-
sis, University of Massachusetts at Amherst.

Roberts, C.: 1989, Modal subordination and pronominal anaphora in discourse,
Linguistics and philosophy 12(6), 683–721.

Russell, B.: 1905, On denoting, Mind 14(4), 479–493.

20

	Introduction
	Introducing CNF

	CNF as Semantic Metalanguage
	Semantic types
	The interpretation function defined
	Rules of interpretation
	Terminal nodes
	Nonterminal nodes

	Indexing constraints
	Examples
	Shorthand

	Anaphora: CNF vs. DRT/DPL
	Basic intra-sentential anaphora
	Discourse (inter-sentential) anaphora
	Donkey anaphora
	Negation, Disjunction, and Universal Quantification
	The Limits of DPL

	Quantification in a quantifier-free language
	Definite determiners and presuppositions
	Plurals
	Generalized Quantifiers
	Every as Set-denoting

	Remaining Issues
	Telescoping
	Every-DPs that cannot be antecedents

