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Partial Parsing

† Standard parsers
– Evaluate global parses, not partial
parses

– Do all-paths search (chart or no)

† Why unrestricted text is difficult
– Incompleteness of lexicon

– Incompleteness of grammar

– Incompleteness of semantics

– Long sentences

– Errors in input

† Partial parsing
– Produce forest

– Speed

– Reliability (precision)

– Breadth

– Robustness

– Sacrifice depth of analysis

† Levels
– Breaking up “The Parsing Problem”

– Fairly independent steps

– Partial parsing is the next step after
tagging
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Cass [6]

† Cascaded cheap analyzers
1. Tag (Church tagger)

2. First guess on NPs (Church NP-recognizer)

3. Finite-state NP recognizer (correct some tagging and NP-boundary errors)

4. Chunks

5. Simplex clauses

6. Clause repair

7. Attachment

† Each analyzer outputs a single ‘best’ answer
† Local search, but no global search, within levels
† Repair errors downstream
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EOS EOS

InP [PP In [NP South Australia beds]]

[ SouthPN AustraliaPN bedsNPl ]
ofP [PP of [NP boulders]]
[ bouldersNP ]
wereBed [VP were deposited]
depositedVbn
byP [PP by [NP melting icebergs]]
[ meltingVbg icebergsNPl ]
inP [PP in [NP a gulf]]
[ aD gulfN ]
[ thatWps ] [WhNP that]
markedVbd [VP marked]
[ theD positionN ] [NP the position]
ofP [PP of [NP the Adelaide geosyncline]]
[ theD AdelaidePN geosynclineN ]
, ,

[ anD elongatedVbn ] [NP an elongated, sediment-filled depression]

,
[ sediment-filledVbn depressionN ]
inP [PP in [NP the crust]]
[ theD crustN ]
. .
EOS EOS



[NoSubj
EOS EOS
[PP In [NP South Australia beds]] [PP In [NP South Australia beds]]
[PP of [NP boulders]] [PP of [NP boulders]]
[VP were deposited] Pred: [VP were deposited]
[PP by [NP melting icebergs]] [PP by [NP melting icebergs]]
[PP in [NP a gulf]] [PP in [NP a gulf]]

]
[SRC

[WhNP that] Subj: [WhNP that]
[VP marked] Pred: [VP marked]
[NP the position] [NP the position]
[PP of [NP the Adelaide geosyncline]] [PP of [NP the Adelaide geosyncline]]
, ,
[NP an elongated, sediment-filled depression] [NP an elongated, sediment-filled depression]
[PP in [NP the crust]] [PP in [NP the crust]]

]
. .
EOS EOS



[NoSubj

EOS

[In South Australia]

[beds]

[of boulders]

[were deposited]

[by melting icebergs]

[in a gulf]

]

[SRC

[that]

[marked]

[the position]

[of the Adelaide geosyncline]

,

[an elongated, sediment-filled depression]

[in the crust]

]

.

EOS

S:

P:

S:

P:



Chunks and Dependencies

South Australia

In NP

S

PP S

beds PP

boulders

were

depositedof NP

NP VP

VP

PP

melting icebergs

by NP

PP

a gulf

that

in NP

NP VP

marked NP

RCNP

Adelaide geosyncline

position PP

of NP

the N

the N
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Chunks and Dependencies

† Factorization of the parsing problem
– Dependencies: lexico-semantic, binary (head-dependent)

– Chunks: syntactic category, finite-state sequences

† Simplex clauses
– Trapping all-ways ambiguities

– E.g., no PP-attachment across clause boundary

– (Chunks trap noun-modification ambiguities)

† Instead of exponential global ambiguity, sequence of independent small sets of choices
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More generally

† Inspired by Gaifman [89]

Headed PS Tree

Characteristic Tree

Projection-Dependency
Tree

IP

DP

VP

NP

saw

a

bird

I

the

cat

DP

NP

Proj1 Proj2 Proj3
the cat

Proj1 Proj2
saw a bird

IP

DP

VP

NP

saw

a

bird

I

the

cat

DP

NP
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Supertags

† Joshi & Srinivas [123]
† Instead of dependencies between projections, dependencies between elementary trees

VP

S

NP

NP

V

saw

NP

N

John

NP

NDetP

bird

† The difference: dependencies can also represent adjunction, not just substitution
† Parsing as tagging: elementary trees are ‘supertags’
† Use standard tagging techniques (HMM’s)
† Or take advantage of dependency information in supertags to identify relevant discontinuous
2-grams
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Voutilainen [191, 127]

† Variant of dependency grammar
† Parsing as tagging
– Syntactic category tag

– Syntactic function tag

† Rules are rules for eliminating tags (“constraints”)

Vfin: : : ! delete MainV
NomHead & : : :Vfin & : NomHead: : :NomHead ! keeponly Subj

† 1300 morphological rules, 120 syntactic rules
† Ambiguous representation
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recent >N
solar >N
and CC
planetary >N
probe NH
launches V
have V
yielded V
a >N
wealth NH
of <N
unexpected >N
data NH

solar recent and planetary probe have yielded wealth of a unexpected datalaunches 

recent >N
solar >N
and CC
planetary >N
probe >N
launches NH
have V
yielded V
a >N
wealth NH
of <N
unexpected >N
data NH

solar recent and planetary probe have yielded wealth of a unexpected datalaunches 



Creative Ambiguity

† Or, Lazy Disambiguation
† Or, Picking the Fights You Can Win
† D-theory [150] Say which clause a PP belongs to without say-

ing where it’s attached

† Unscoped quantificational formulae
† Ambiguity preservation in transfer in MT
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Chunks

PP ! (p j to )+ (NP j vbg)
WhPP! (p j to)+ WhNP
AdvP ! (ql j precd j rb)* rb
AP ! (AdvP j ql)* adj
Inf ! to AdvP? VP-inf
VP ! AdvP? (md j v-tns j hv-tns VPN? j be-tns (VPG j Vn)?)
VP-inf = AdvP? (vb j hv VPN? j be (VPG j Vn)?)
VPN = AdvP? (vbn j hvn j ben (VPG j Vn)?)
VPG = AdvP? (vbg j hvg j beg Vn?)
Vn = AdvP? (vbn j hvn j ben)
Other ! any
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Longest match heuristic

† Used in lexical analyzers for compilers
† Psychologically plausible

the emergency crews always dread is domestic violence

while she was mending the sock fell off her lap
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Longest Match

† One automaton for each phrase category
† Start automata at position i (initially, i = 0)

† Take longest match
saw horses are needed0 1 2 3 4

NP
VP
NP

† Set i := j and repeat

VP
VP

saw horses are needed0 1 2 3 4
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Effectiveness of longest match

† Take chunks out of the UPenn Treebank

NP ! D N
NP ! D Adj N
VP ! V
VP ! Hv Vbn

...

† At each point in string take longest matching pattern
– Guess if multiple longest matches (of different category)

– Punt one word if no match

† Performance: Precision .92
Recall .88
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Finite-state techniques

† Hand-written grammar (regular expressions)

NP ! Det? (Adj j Ing)⁄ N

† Compile into FSA

AdvD ? ( ? Adj Vbg N)|          (         *  )       X ?  X Y|    *  X

D
0

Adv
0

Adj
0

Vbg
0

N
0

0

1

2

= 1

= 1

3

0 1

2

3

D,Adj,Vbg
Adj,Vbg

Ad
v Adv

Adj,Vbg

N N
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Clause

Extra-VPs ! EOC+ pre NP mid VP post (VP post)+
Clause ! EOC+ pre NP mid VP post
ObjRC ! EOC⁄ WhNP pre NP mid VP post
SubjRC ! EOC⁄ WhNP mid VP post

WhClause ! EOC⁄ (WhPP j wrb) pre NP mid VP post
VP-Conj ! cc VP post
No-Subj ! EOC+ pre VP post
No-VP ! EOC+ post

pre = (X j Wh j PP-Conj)⁄ ((, AdvP)? ,)?
mid = (X j EOC-Soft j NP)⁄
post = (X j NP)⁄

PP-Conj = PP (, N PP⁄)⁄ cc NP
X = [ˆ Special]

Special = [EOC Wh NP VP]
EOC = [EOC-Hard EOC-Soft]

EOC-Hard = [: . eos]
EOC-Soft = [, cc cs that]

Wh = [WhNP WhPP wrb]
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Bottom line

† Fast (once upon a time) Pos: 4.2 ms/w
Cass: 15.0 ms/w
Total: 19.2 ms/w = 52 w/s

† Accurate »5% error chunks
»5% error subj & pred

† BUT: Already in the tail
– Only a few error types occur frequently

– Only a few changes to the grammar will have much effect

– The rest is sand
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Parser speed

† Want a fast parser, get a fast machine † Restricting search helps

Program depth sw hardware w/s
Fidditch3 parse C SGI 5600
Copsy np Pascal BS2000 2700
CG dep Sparc10 1550 §250
Fidditch3 parse C Sun4 1200
Pos tag Sun4 240
Fidditch2 parse Lisp Sun4 62
Cass chunk Lisp Sun4 52
Clarit np Lisp 50
Fastus chunk Lisp Sparc2 39
Cass chunk Lisp UX400S 32
Scisor skim 30
Fidditch1 parse Lisp Sym-36xx 28
McDonald parse MacII 14 §6
Chupa parse Lisp UX400S 1.1
Traditional parse 0.20
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Lies, damned lies, and statistics

† What would you get by guessing?
– Tagging: always taking most-frequent tag ! 10% error

† Per-chunk error rate vs. per-sentence error rate
5% chunk error
10 chunks/sentence
1¡ (1¡ :5)10 = 40% sentence error

† Zipf’s Law
– A little effort goes a long way—at first

– The down side—further significant error
reduction requires horrendous effort

Effort

E
rr

or
 R

at
e
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Chinks and chunks

† Venerable idea:
– Function words are phrase delimiters (chinks)

– Content words are phrase contents (chunks)

† Ross & Tukey [164]
– Used for sorting KWIC index of statistical works

on the construction of Bose-Chaudhuri matrices
with the help of Abelian group characters

† fgroups
– F+ C+

– Used as low-level phrasal units in Bell Labs speech synthesizer
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Ejerhed & Church [71, 70]

† Non-recursive (simplex) NP’s and clauses
† Finite-state and stochastic methods
† Motivated in part by psycholinguistic studies
† Performance

NP Clause
Finite-state 3.3% 13%
Stochastic 1.4% 6.5%

† Application: text-to-speech (intonation)
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Clause grammar

Clause ! cc? NP ([cc p $] NP)⁄ adv? tns-v X⁄ Punct?
j cc Adv? v X⁄ Punct?
j cc? Comp+ X⁄ Punct?
j cc? NP ([cc p $] NP)⁄ X⁄ Punct?
j Verb X⁄ Punct?
j cc? (Stray j NP)⁄ X⁄ Punct?

X = [ˆ Comp Punct]
Comp = [cs to wdt wrb wps wpo wp$ wql]
Punct = [, . – :]
Adv = [rb rbr]
Verb = [tns-v vbg vbn beg hvg]
Stray = [Adv rp ql neg nr jj jjr p]

25



Example

[ the jury further said in term-end presentments ]
[ that the City Executive Committee , ]
[ which had over-all charge of the election , ]
[ deserves the praise and thanks of the City of Atlanta for the manner in ]
[ which the election was conducted . ]

26



Church [57, 58]

† Stochastic tagger, followed by nonrecursive NP recognizer
† Between any pair of tags, we can insert one of:

[ ] ][ -

† Must keep track of whether inside or outside of NP

[ the [ corrosion weight loss [

† Computation:

B: [ - - - ] [ : : :
I: 0 1 1 1 1 0 : : :
T: $D DN NN NN NP PD : : :

† Choose the sequence of brackets with the highest probability
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Probabilities

B: [ - - - ] [ : : :
I: 0 1 1 1 1 0 : : :
T: $D DN NN NN NP PD : : :

† Estimate by counting in parsed corpus P̂r(BjT ) = f (B; T )

f (T )

† Including inside/outside constraint ⁄[[ Pr(B = b[jT; I = 1) = 0
⁄]] Pr(B = b]jT; I = 0) = 0
⁄]] Pr(B = b][jT; I = 0) = 0

Pr(BjT; I) = fiPr(BjT )

† Choices at different positions independent Pr(BjT; I) =
Y

i

Pr(BijTi; Ii)
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Fidditch [101]

† Industrial-strength version of Marcus Parser

Create Recognizing leading edge of new node
Attach Recognizing material belong to current node
Drop (Close) Recognizing leading edge of material following

node
Switch Subject-aux inversion
Insert Recognizing empty category
Attention-shift Recognizing leading edge of NP in lookahead
Punt Avoid an attachment decision

WhPro

WhNP

Verb

NP

Verb

Aux

Do

Attach

Create & Attach

Drop (Close)
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Fidditch tree

e

Tns

SBarQ

SQ

WhNP

Who  

NP

did  the  opposition  groups  approach  about  the  issues  .

PP

N Nt

NP

VP

NP

Aux
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Bourigault [37]

† Extraction of likely multi-word terms for automatic indexing
† Phrase boundaries
– Chinks: things that can’t be chunks

– E.g., Verbs, Pron, Conj, Prep (except de, a, Det

– un [ traitement de texte ] est installe sur le [ disque dur de la station de travail ]

† Parsing/extraction
– Rules for extracting smaller potential terms

– E.g. N1 Adj P D N2 P N3 ! N1 Adj, N2 P N3
– disque dur, station de travail

– 800 such rules, manually built and tested
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Chen and Chen [110]

† Building sequence of chunks on tags

C =

T =

W =

C1 C2 C3

T1 T2 T3 T4 T5 T6 T7

W1 W2 W3 W4 W5 W6 W7

† Best chunk

C⁄ = argmaxC Pr(CjW )
=̂ argmaxC Pr(CjT )
=̂ argmaxC

Q
i Pr(CijC1; : : : ; Ci¡1; T )

=̂ argmaxC
Q

i Pr(CijCi¡1; T )
=̂ argmaxC

Q
i Pr(CijCi¡1) Pr(CijT ) !

† Probabilities estimated from parsed corpus (Susanne)
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Internal probability and contextual probability

† Church and DeRose also say Pr(TijTi¡1;Wi)=̂ Pr(TijTi¡1) Pr(TijWi)

† Doesn’t necessarily hurt performance
† But:

D = throw of die
E = 1 if D is even, 0 otherwise
L = 1 if D • 3, 0 otherwise

Pr(D = 2jE = 1; L = 1) = 1
Pr(D = 2jE = 1) Pr(D = 2jL = 1) = 1=9 !

† Combining information sources: multivariate regression
† Alternative: HMM Pr(TjW) / Pr(T;W)

=̂
Q

i Pr(TijTi¡1) Pr(WijTi)
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Rooth [163]

† Modified Hidden Markov Model

CBC has a vested interest in ...

NP
12

PN VBS

AT VBN NN

IN

...

...

NP
12

NP
11

NP
13

AT VBN NN

AT JJ NN

AT JJ NNNN

...
...

...
...

† Generation probabilities Pr(xijxi¡1) Pr(wjt)
† Choose the structure by which the words were most likely generated
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Threads

† Determinism
† Local evaluation of pieces
† Dependency grammar
DG $ CFG $ chunks

† Levels/cascade
– Specialized grammars

– Creative ambiguity

† Longest match
† Likelihood
– HMM’s

– Regression

† Induction (bootstrapping, GI)
† Linguistic/psycholinguistic issues
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MUC

† Message Understanding Conference
† Task: data extraction from news reports
– Filter out irrelevant texts

– Tokenize and clean

– Trigger on tokens

– Fill semantic frames

– Merge frames to fill data templates
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Example

Garcia Alvarado,  56,  was killed  when 

a bomb  placed by  urban guerrillas  

on his vehicle  exploded as it came to a halt

at an intersection  in downtown San Salvador.

Message: ID TST2-MUC4-00480.

Incident: Location El Salvador: San Salvador (City)3.

Incident: Type Bombing4.

Incident: Instrument ID "bomb"6.

Perp: Individual ID "urban guerrillas"9.

Phys Tgt: ID "vehicle"12.

Hum Tgt: Name "Garcia Alvarado"18.

23. Hum Tgt: Effect of Incident Death: "Garcia Alvarado"
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Weischedel et. al, “Partial Parsing” [195]

† Partial parsing for handling unrestricted text
† Message Understanding doesn’t require complete parse

– Data extraction

– Message routing

– Message prioritization

A bomb exploded today at dawn

in the Peruvian town of Yunguyo,
near the lake, very near where the
Presidential summit was to take place.

event date

place

† Questions
– Effectiveness of fragment recognition?

– How to interpret fragments?

† Interpretation
– Identify headword to get semantic class
of phrase

– Make attachment if class satisfies slot
requirement
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Tokenize and clean

† Issues
– Spelling errors

– Foreign words / foreign names

– Punctuation

– Formulae

– Graphics / Formatting

– Sentence, paragraph boundaries

† Requirements
– Fast

– Highly reliable (snowball)

– When in doubt, pass on ambiguity

† Shades into partial parsing
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Futrelle et al. [87]

† Examples

7.3 sodium chloride
36,768 CO2
2,6-diaminohexanoic acid 3:4£ 10¡8
3H

Cells were suspended in a medium con-
taining 3:05 £ 10¡2„M L-[methyl-3H]-
methione, fi-methylaspartate and AIBU8.

† Deterministic subgrammars
† Hand-correction
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Examples

† Date/time expressions
24.10.94 10:06 p.m.
10/24/94 2000 GMT
Tues. the 24th Oct., 1994 two-thirty
Thu, 06 Oct 1994 11:47:55 EDT

† Names
– Person: John T. Smith, Juan Mercedes Garcia de Mendoza, Kim Hyon-Sook

– Place: the Orontes River; Mt. Pinatubo; Paris, TX

– Organization: IBM; AT&T; Mt. Sinai Publishing Co., Inc.

– Titles: Green County Sheriff’s Deputy Gordon Caldwell

† Bibliographic conventions
Smyth (1990)
Fig. 2
: : : as is probable.6

NEW ORLEANS, 19 Jun 93 (API) –

† State of the art: write little grammars by hand
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PLUM (BBN) [17]

† Uses de Marcken parser to get fragments
† Semantic frames tied to words

bombV (subj [1], obj [2])

2
4
bombing
ti-perp-of hpersoni [[1]]
object-of hanyi [[2]]

3
5

† Frame of fragment is gotten from head

† Assemble fragments deterministically via
attachment

– Try leftward attachments first

– Try low attachments before high

– Take first attachment satisfying slot
constraints
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Seneff [174]

† Start with standard full-sentence parser
† Parse fails: no S[0; n]

– Consider X [i; j] for X “major” and i = 0

– Take longest match (maximize j)

– Set i = j, repeat

– If no X [i; j], take next word, set i = i + 1, repeat

† Use discourse processor to integrate fragments
† Bottom line: good, but not as good as full-sentence parser
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Using Discourse Processor

aircraft_type

for flight

number 281

aircraft_meal

for flight

( what are the meals ) and ( aircraft for flight two eighty one ) and 

also for ( flight two oh one )

what are the meals

aircraft for flight two eighty one

flight two oh one

Existential_clause

topic

flight

number 201

Existential_clause

topic
aircraft_meal

for

aircraft_type

for flight

number 281
201
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Big problem for frame-based systems

† Building lexicon of frames
† Frames provide robustness: assemble any way they fit
† Acquiring new frames from corpora
– To name a few at random: [16, 34, 40, 44, 54, 60, 77, 95, 103, 128, 135, 147, 158, 177,
176, 199]

† UMass: AutoSlog
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AutoSlog [139]

† Input: examples of correct slot filles
The ARCE battalion command has reported that about 50 peasants of
various ages have been kidnapped by terrorists of the Farabundo Marti
National Liberation Front in San Miguel department.

[perp-indiv-id “terrorists”]

† Parse sentence, look at region around given
word

actor: peasants
verb: kidnapped [passive]
prep: by
pobj: terrorists of FMNL

† Propose pattern
verb = kidnapped [passive]
actor = any

PPby =

2
664

organization
terrorist
proper-name
human

3
775

† Automatic evaluation of precision/recall possible

46



Fastus [108, 107]

The inspiration for FASTUS was threefold. First, we were struck by the strong per-
formance that the group at the University of Massachusetts got out of a fairly simple
system. It was clear they were not doing anything like the depth of preprocessing,
syntactic analysis, or pragmatics that was being done by the systems at SRI, General
Electric, or New York University. They were not doing a lot of processing. They
were doing the right processing.

The second source of inspiration was Pereira’s work on finite-state approximations
of grammars, especially the speed of the implementation.

Speed was the third source. It was simply too embarassing to have to report at
the MUC-3 conference that it took TACITUS 36 hours to process 100 messages.
FASTUS has brought that time down to 11 minutes.
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Fastus

† Triggering: single keywords from patterns plus known proper names
† Phrase recognition
– Noun groups

– Verb groups

– P, Conj, RelPro, ago, that

– Keep only longest match (nested, not overlapping)

† Patterns
killing of hHumanTargeti
hGovtOfficiali accused hPerpOrgi
bomb was placed by hPerpi on hPhysicalTargeti

† Merge compatible incidents
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Fastus example

Noun Group: Salvadoran President-elect
Name: Alfredo Cristiani
Verb Group: condemned
Noun Group: the terrorist
Verb Group: killing
Prep: of
Noun Group: Attorney General
Name: Roberto Garcia Alvarado
Conj: and
Verb Group: accused
Noun Group: the Farabundo Marti National Liberation Front (FMLN)
Prep: of
Noun Group: the crime
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Fastus merging

† Lots of frame scraps
† Merge if all slot-fillers compatible

2
664

Incident Killing
Perp –
Confid –
HumTarg “Alvarado”

3
775+

2
664

Incident Incident
Perp FMLN
Confid Suspected
HumTarg –

3
775 )

2
664

Incident Killing
Perp FMLN
Confid Suspected
HumTarg “Alvarado”

3
775

T

Killing Bombing

Incident Person

Attorney General Priest Peasant
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Schwarz: Copsy [169]

† Dependency parsing of noun phrases to improve precision in IR

of inscientific analysis amino acid s cheese

milk storage of milkstorage

a at one endrod fixed a rodfixed

† Recognition rules must be
– Relevant

– Highly accurate

– Cheap to apply

† Normalization
– Dependencies

– Development labor-intensive

200 proposed rules tested manually on
15,000 matching sentences to yield 45
final rules
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Copsy: matching

† Index only words, not phrases
† Presearch: boolean OR of words in query
† Parse query, match against parsed documents in initial return set

for for an

-

plans metal housing s

adjustable water driven vacuum pump

vacuum pump

Query Document

† Fast enough to parse documents at search time (19 Kb/s)
† Only 10% space overhead, however

52



More threads

† Interpretation
– Dependencies $ Slots
– “class = head class” is consequence

– Merging if slot-fillers are compatible

† Applications
– Bootstrapping (collocations, alignment, : : :)

– MUC (Data extraction)

– Terminology extraction

– IR

– Language models, spoken language understanding
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Generation via Hidden Markov Model [160]

† Finite set of states si

† Finite set of output symbols wi

† Random variables Qt

State at time t

† Random variables Ot

Observation at time t

† Transition probabilities aij

Pr(Qt+1 = sjjQt = si)

† Emission probabilities bi(w)
Pr(Ot = wjQt = si)

† Initial probabilities …i

Pr(Q1 = si)
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Example: Tagger

† States are tags f$, N, Pron, V, Dg
† Output symbols are words fI, see, a, bird, .g

† Transition matrix
$ N Pron V D

$ 0 .2 .5 0 .2
N .3 .3 0 .4 0
Pron .2 .1 0 .6 .1
V .4 .2 .2 0 .2
D 0 1 0 0 0

† Emission matrix
I see a bird .

$ 0 0 0 0 1
N .1 .1 .1 .7 0
Pron 1 0 0 0 0
V 0 .9 0 .1 0
D 0 0 1 0 0

† Initial matrix
$ N Pron V D
0 .2 .5 0 .3
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Probability of Generating a Structure

$ N Pron V D
$ 0 .2 .5 0 .2
N .3 .3 0 .4 0
Pron .2 .1 0 .6 .1
V .4 .2 .2 0 .2
D 0 1 0 0 0

I see a bird .
$ 0 0 0 0 1
N .1 .1 .1 .7 0
Pron 1 0 0 0 0
V 0 .9 0 .1 0
D 0 0 1 0 0

$ N Pron V D
0 .2 .5 0 .3

.7.1.1

N N N N $

I see a bird .O:

S:

1 2 3 4 5t:

.2 .3 .3 .3 .3

.1 .1 e -16

Pron

1.91

V D N $

I see a bird .O:

S: .5 .6 .2 1 .3

1 .7 e-4.5
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State sequence as path

.5

$

N

Pron

V

D

aPron,VPronπ bPron(I) V (see)b V,Da D(a)b D,Na N (bird)b N,$a $(.)b

.1

.9

1.

.7

1.

.6

.2

1.

.3
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Paths

State sequence (path) q = (q1; : : : ; qT )
Observation sequence o = (o1; : : : ; oT )
Probability Pr(q;o) = Pr(Q1 = q1; : : : ; QT = qT ; O1 = o1; : : : ; OT = oT )
Likelihood of path L(q) = Pr(q;o)
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‘Best’ = Maximum Likelihood

† We want q⁄ = argmax
q
Pr(qjo)

† By definition Pr(qjo) = Pr(q;o)

Pr(o)

† Since Pr(o) is constant Pr(qjo) / Pr(q;o)

† Therefore argmax
q
Pr(qjo) = argmax

q
Pr(q;o)

† Substituting q⁄ = argmax
q
L(q)

† That is, q⁄ is the maximum-likelihood state sequence
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Partial paths

Partial path from u to v q : u; v

Context-independent likelihood ‚(q) =

v¡1Y
t=u

aijbj(ot+1) where qt = si; qt+1 = sj

qu qv
a ij

b j

q

a ij

b j

.  .  .

.  .  .

.  .  .

.  .  .

a ij a ijb j b j .  .  . . . . .  .  .

q
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Partial paths

† Special case: initial

q : 1; t ‚(q) :

a ij a ijb j b j .  .  . . . . 
π i b i

‚0(q) = …ibi(o1)‚(q)

a ij a ijb j b j .  .  . . . . 
π i b i

† Relation to likelihood
if q : 1; T then L(q) = ‚0(q)
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Computing q⁄

† Most-likely partial sequence q⁄
t (i) = argmax

q:1;tjqt=si

‚0(q)

† Likelihood thereof –t(i) = max
q:1;tjqt=si

‚0(q)

s

t

i

† Time 1

is
π i

t=1

b i
–1(i) = …ibi(o1)
q⁄
1(i) = hsii

† Time t + 1

js
b j

b i
is

t t+1

q*i

q*j

–t+1(j) = max
i

–t(i)aijbj(ot+1)

i⁄ = argmax
i

–t(i)aijbj(ot+1)

q⁄
t+1(j) = q⁄

t (i⁄)ˆhsji
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Computing q⁄

† Recursive definitions for q⁄
t (i), –t(i)

† Fill in array by increasing values of variable of recursion (t)

0

.6

.3
$

N

Pron

V

D

I see a bird .

.2

.5

.3

π i bi

.1

1.

.02

.5

L1 aij bi L2 aij bi L3 aij bi L4 aij

.1
.1

.9

.2

.2

.1

1.

.0054

.054

.4

1.

.7

.1

.0378

.000216

.005

.27

bi L5

1. .01134

63



NP-Recognizer as HMM

† States [ ] ][ - #

† …, a, b

[ ] ][ - #

.5 .5
[ ] ][ - #

[ .5 .1 .4
] .6 .4
][ .4 .6
- .5 .1 .4
# .2 .8

$N $D $P N$ NN ND NV NP DN V$ VN VD VV VP P$ PN PD PV
[ .1 .2 .15 .2 .15 .2
] .25 .3 .4 .05
][ .5 .5
- .5 .1 .4
# .05 .3 .1 .1 .4 .05

† L(S)

S:

O:

[ - []--

$D DN NN NN NP PD . . .

.4.5 .4 .4 .5 .6 . . .

.2 .5 .5 .4 .2.4
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Viterbi with brackets

.5[

]

][

-

#

$N NN NV VD

π i bi L1

.05

aij bi L2 aij bi L3 aij bi L4

.0015

.00018

.0025

.01

.1

.1

.4 .5

.5

.4

.5

.5

.3
.6

.2

•
N N

computer science

‚
V
is

•
D
a : : :

65



Matching up pairs

† HMM does not guarantee that tag-pairs match up

S:

O:

[ - -

$N DN DN

.4.5 .4

.1 .4.4

† Define L0(q;o) =

‰
fiL(q;o) if o has matching tag-pairs
0 otherwise

– fi is normalization constant to guarantee that

X
q;o

L0(q;o) = 1
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Phrase spotting

† Identifying individual phrases reliably
† E.g. for terminology extraction
† Aim: high precision, high recall, on individual phrases
Don’t care about getting complete, consistent parse for sentences

† Issues
– Can’t ignore context of candidate phrase

– Can’t directly compare ‚(q) and ‚(q0)
– How do we compute Pr(qjo) for partial paths?
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Phrase spotting

1. Can’t just ignore context

.4

.5[ - ]

$D DN NP

.5 .4

.2 .3S1

L=.0024

PV

L=0

S2 .1

.4[ - -

$D DN NP

.5 .4

.2 .3

].5

.05

PV

L=.00048 L=.000012
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Phrase spotting

2. Can’t just compare likelihoods

.05

.5[ - ]

$N NP PV

.5 .4

.1 .1
L=.00005 L=.0015

Pr(S|O) = 1
.5

.5

.3

[ - ]

$N NN NV

.5 .4

.1

.5

.4

.3

[ ][ ]

$N NN NV

.5 .1

.1

Pr(S|O) = .833

Pr(S|O) = .167

L=.0003
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Relative likelihood

† The likelihood of being right, given the input

Pr(qjo) = Pr(q;o)

Pr(o)

=
Pr(q;o)P
q0 Pr(q0;o)

=
L(q)P
q0 L(q0)

† For complete state-sequences, most-likely path is most-reliable

argmax
q
Pr(q;o) = argmax

q
Pr(qjo)

† Not so for partial paths
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Partial paths

† Prefix and suffix paths

s

A t ( )i

t

i

1 Tt

Bt ( )i

si

At(i) = fq : 1; tjqt = sig

fit(i) =
X

q2At(i)

‚0(q)

Bt(i) = fq : t; T jqt = sig

flt(i) =
X

q2Bt(i)

‚(q)
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Partial paths

† Partial-path likelihood

L(q) = Pr(q;o) = fiu(i)‚(q)flv(j)
sjsi

u v

q

† Relative likelihood

Pr(qjo) = L(q)P
q0:u;v L(q0)
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Dynamic Programming

† ft(xi) only requires values for fu(xj) for u < t

† t is variable of recursion

† Fill in array by increasing t

x1

nx

ix

0 t T

ft ( )ix

† Example: –t(i)
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Recursive definitions for fi, fl

fi1(i) = …ibi(o1)
π

b

fit+1(j) =
X

i

fit(i)aijbj(ot+1)

α t

a
b

flT (i) = 1

flt¡1(i) =
X

j

aijbj(ot)flt(j)
b

β t

a
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Remaining problems for phrase-spotting

† Dependent on global analysis
– Search is linear-time, but can be moderately expensive if large numbers of states

– Poor enough models of ‘garbage’ can damage estimates of Pr(qjo) for relevant phrases
q

– Can’t always reliably segment text into sentences

† Integrating multiple information sources
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Another problem: relative likelihood is not precision

† Some misspellings are undetectable at word level

combing appositive NPs
we had a rather milk winter

† Don’t want to assume all words are misspelled (search)
† Would like to detect problem by low relative likelihood
† But if there’s only one analysis, relative likelihood = 1, no matter how improbable the
analysis

† Precision is corpus-global measure of relative likelihood
E.g., of all the times we’ve seen “D Adv N N $”, how often has it been an NP?

† Have to estimate precision directly: it is neither likelihood nor relative likelihood
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Parameter estimation

† With parsed corpus: count

aij = Pr(Qt+1 = sjjQt = si) =̂
f (Qt = si; Qt+1 = sj)

f (Qt = si)

bi(w) = Pr(ot = wjQt = si) =̂
f (Qt = si;ot = w)

f (Qt = si)

† Corpus is one giant observation sequence

[ - [] --

$D DN NN NVNP PD DN VN NP PD DN N$

] [ ] [ - ]

â[¡ =
f ([¡)
f ([)

=
3

4
b̂[(PD) =

f ([; P D)

f ([)
=
2

4
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Why zeros are a problem

† Two structures with same likelihood: L = 0

[ - -

$D DN NN

.4.5 .4

.2 .5.4

] # [ - - - ].5 .4 .2 .4 .4 .5.4

.3 .2.4 .250 .5.4

NV VP PD DD DN NN N$

S1

000000

000000] - -

$D DN NN

.40

.5.4

][ # - [ [ # #.1 .8

.4 0

NV VP PD DD DN NN N$

S2

† But if we replace ‘0’ with ‘.01’: L(S1) = e¡24

L(S2) = e¡70
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Smoothing

† Choosing a good value to replace the zeros
† From choosing a smooth curve:

f

X

5
4
3
2
1
0

104 105 106 107 108 109 110...
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Good-Turing [59]

f nf f ¢ nf

9 22; 280 200; 520
8 27; 710 221; 680
7 35; 709 249; 963
6 48; 190 289; 140
5 68; 379 341; 895
4 105; 668 422; 672
3 188; 933 566; 799
2 449; 721 899; 442
1 2; 018; 046 2; 018; 046
0 74; 671; 100; 000 0

f̄ ¢ nf = (f + 1) ¢ nf+1

f̄ =
(f + 1) ¢ nf+1

nf
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Cat-cal

† Categorize and calibrate
† Some of the events with 0 counts in training have > 0 counts in test

† Group by count

Ge = fe0jf (e0) = f (e)g

† Re-estimate counts for groups from cross-validation corpus
† Re-estimate individual counts as group count times probability of choosing individual out
of group

f̄ (e) = f̄ (Ge) ¢ Pr(ejGe)
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Cat-cal

Corpus 1 Corpus2 f̄ (Gi) Pr(ejGe) (̄f )
G2 [ - 2 3 3 1 3
[ ] 1 2 :3 1:2

G1 - - 1 2 4 :3 1:2
- ] 1 0 :3 1:2
][ - 0 0 :2 :4
# # 0 0 :2 :4

G0 ] # 0 0 2 :2 :4
# ] 0 0 :2 :4
][ ] 0 0 :2 :4
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Without Parsed Corpus

† Probability of transition from si to sj at t to t + 1

Pr(Qt = si; qt+1 = sjjo) = Pr(qjo) for q : t; t + 1, qt = si, qt+1 = sj

† Probability of being in si at t

Pr(Qt = sijo) = Pr(qjo) for q : t; t, qt = si
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Without parsed corpus

† Use relative likelihood of transitions/emissions
† Suppose Pr(si !t sjjo) = :25

– Then if the Markov process generates o 100 times, we expect it to see si !t sj 25 times

– Equivalently, we take Pr(si !t sjjo) as a fractional count

† Sum across time positions

f (si ! sjjo) =
X

t

Pr(si !t sjjo)

† Use same re-estimation formulae as for parsed corpus

aij = Pr(Qt+1 = sjjQt = si) =̂
f (Qt = si; Qt+1 = sj)

f (Qt = si)

bi(w) = Pr(ot = wjQt = si) =̂
f (Qt = si;ot = w)

f (Qt = si)
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Iteration

† To compute Pr(si ! sjjo), etc., we need initial guess

M0 = (a0; b0; …0)

† Iterate using fractional counts to get Mi+1 from Mi

† Likelihood of model

L(M ) = Pr(o; M ) =
X
q

Pr(q;o; M )

† It can be shown that
L(Mi+1) ‚ L(Mi)

† But:
– Local maximum

– Overtraining
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Rooth

CBC has a vested interest in ...

NP
12

PN VBS

AT VBN NN

IN

...

...

NP
12

NP
11

NP
13

AT VBN NN

AT JJ NN

AT JJ NNNN

...
...

...
...

Can be mapped to a standard HMM:

PN VBS IN

CBC has a vested interest in

/ATNP12 /VBNNP12 /NNNP12
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Extensions

† Could also ‘tie’ states
– E.g. set bNP12/AT

= bAT

– Estimate

b̂NP12/AT
(w) = b̂AT(w) =

f (NP12/AT; w) + f (AT; w)P
w0[f (NP12/AT; w0) + f (AT; w0)]

† Generalizing to categories other than NP
† Leads to: finite-state chunks
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An HMM is a (stochastic) FSA

[ ] ][ - #

[ .5 .1 .4
] .6 .4
][ .4 .6
- .5 .1 .4
# .2 .8

.6
[

#

]

][ -

.8

.5

.5
.4

.4

.4 .4
.6

.1

.1

.2
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Composing FSA’s

NP = D? Adj⁄ N+ $NP
PP = P NP $PP
VP = (V jHv Vbn jBe Vbg) $VP
Chunk = NP jPP jVP
S ! Chunk+

1

2
3

4

5
6

7

8

9

$NP

$PP

$VP
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Matching

† Works great if the $’s are in the input

1 2 3 4 5 6 1

D
the

N
man

$NP
in the park

PP$D NP
1

† Fold $’s into surrounding states

1 2 4 5 6 1

D
the

N
man

$NP
in the park

PP$
D NP

3 1
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Result

† Add new states 3$NP1, 6$NP1, 8$NP1
† Tie transitions to transitions from original state 1
† Now non-deterministic

1

N
science

$NP
3 1

computer

3

N
$NP

3 11

N
science

$NP
3 1

computer
N

† Parse is uniquely recoverable from state-sequence
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Final step

† FSA scans on arcs, HMM emits on states
† Turn state-pairs into states

D
the

N
man in the park

D NP

1 2 2 3 $NP 1 3 $NP 1 4 4 5 5 6 1PP$

† Transition from ij to jk corresponds to transition from j to k in the underlying FSA

† Initial probability of 1i represents probability of transition from initial state 1 to i
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Cascaded FSA’s

† More of the same medicine
Clause ! PP⁄ NP PP⁄ VP NP? PP⁄ . $Clause

† Insert a copy of the PP regex at each place there’s a PP
† Build a large FSA from the resulting regex
† Tie corresponding transitions in different copies of sub-regex

P

$PP
A

N

D

1
2

3
A

N

D

1
2

3

$NP
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Multiple information sources

† Suppose choice of bracket depends on preceding bracket and preceding tag

[ ]-

$D DN NN NV

-

† Remember, we cannot do: Pr(ot+1jqt+1;ot) = Pr(ot+1jqt+1) Pr(ot+1jot) Not!

† We must estimate the entire distribution Pr(ot+1;qt+1;ot)

† In effect, we must fold together all information sources into single state

$D DN NN NV

[
$D

-
DN

]
NVNN

-
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Also for phrase spotting

† Integrate multiple info sources in estimating aij, bi(w)

– Folding info sources together leads to state-space explosion, sparse data problems

– Combine information from features of state to estimate transition/emission probabilities

† Integrate multiple info sources in estimating precision of phrase-spotting pattern

– Longest match vs. longer-same-cat vs. longer-other-cat vs. overlapping

– Collocation score

– Tagging score

– Phrase type

– Etc.
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Linear interpolation

† Separately train submodels M1; M2; : : :

† E.g., M1 is an HMM that only looks at previous bracket, and M2 looks only at previous
tag

† Combine into single model
– Hold ak

ij fixed

– Train ‚k

– Transition probability in combined HMM is
P

k ‚kkij =
P

k Pr(Mk) Pr(i ! jjMk)

λ1
a ij

1

λ2

λ3

a ij
2

a ij
3
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Regression

† “Regression analysis is the part of statistics that deals with
investigation of the relationship between two or more variables
related in a nondeterministic fashion” [68]

† For example: linear regression

Y = fl0 + fl1X + †

ŷ = fl̂0 + fl̂1X
X

Y

 = β̂
0

Xβ̂
1ŷ +

yiŷi - 

† Estimating fl0, fl1: minimize squared error
P
(ŷ ¡ y)2

† Minimum can be determined analytically from observed pairs (xi; yi)

† For given value x, we have point estimate ŷ and probability distribution p̂(yjx)
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Multivariate regression

† Combining info from multiple variables

Y = fl0 + fl1X1 + : : : + flnXn + †

† Xi are predictor variables

† Estimate fli by minimizing squared error

† To do so, need observations (x1i; : : : ; xni; yi)

† For given values hx1; : : : ; xni of predictor variables, we have point estimate and distribution
for Y

† Only useful if relationship is approximately linear (though polynomial generalizations do
exist)
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Regression trees [38, 20]

[ - ]- [ - ][ - ][ - - ]

ND DN NN NP PN NN NN NDNN DN NN NP

[
-
]
][

2/12
6/12
2/12
2/12

O = ND?
[ - ]- [ - ][ - ][ - - ]

ND DN NN NP PN NN NN NDNN DN NN NP

[
-
]
][

1/2
1/2

[
-
]
][

1/10
6/10
2/10
1/10

- ]- [ - ][ - - - ][

ND DN NN NP PN NN NN

][

NDNN DN NN NP
Q = -?

[
-
]
][

1/5
4/5

[
-
]
][

2/5
2/5
1/5

Y N

Y N
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How good is a split?

† We want to reduce uncertainty about dependent variable
† Uncertainty = entropy
† 1 bit = the uncertainty in one equally-likely two-way guess
† E.g. flip two coins: Same, A, B

A = B?

Same
p = 1/2

A = Heads?

A
p = 1/4

B
p = 1/4

y n

y n
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Entropy

† Point entropy · – number of 2-way choices to reach given result

·(Same) = 1
·(A) = 2
·(B) = 2

† Probability p of ending up at result

p(Same) = 1=2
p(A) = 1=4
p(B) = 1=4

† Entropy is average number of 2-way choices = weighted average of ·

= p(Same)·(Same) + p(A)·(A) + p(B)·(B)
= 1
2 ¢ 1 + 14 ¢ 2 + 14 ¢ 2

= 1:5
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Entropy

† In binary-branching tree of uniform depth · containing N leaves

N = 2·

p =
1

N

i.e.,

· = log2N

N =
1

p

· = log2
1
p

† The same relation can be used generally

·i = log2
1

pi
H =

X
i

pi·i

† Entropy is maximized when all choices are equally likely (maximum uncertainty)
† The more skewed the distribution, the lower the entropy, the lower the uncertainty
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Goodness of split

† Goodness of split is reduction in uncertainty: 1.48 - 0.82 = 0.66

O = ND?

[
-
]
][

1/2
1/2

[
-
]
][

1/10
6/10
2/10
1/10

Y N

H = 1 H = 1.57

p=2/12 p=10/12

H = 1.48
O = ND?

[
-
]
][

1/2
1/2

[
-
]
][

1/10
6/10
2/10
1/10

Q = -?

[
-
]
][

1/5
4/5

[
-
]
][

2/5
2/5
1/5

Y N

Y N

H = 0.50

H = 1

H = 1.05

p=5/10 p=5/10

H = 0.78

p=2/12 p=10/12

H = 0.82
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Decision lists

† Binary decision tree in which one daughter of every node is a leaf

?

?

?

† Alternative to greedy algorithm (Yarowsky [198])
– Discriminator: question + answer (Y/N)

– Evaluate each discriminator independently on all data

– Goodness of discriminator is inverse to uncertainty of resulting leaf distribution

– Sort discriminators by goodness to create decision list
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Transformation-based regression (Brill [41])

† Initial assignment rules
E.g., assign most frequent bracket to tag-pairs

† Error-correction rules Y ! Y 0 / X1 = x1; : : : ; Xn = xn

† Predictor variables: X1; : : : ; Xn and Y

† Dependent variable: Y 0 = Y at t + 1

† Iterate
– Evaluate all potential rules

– Choose best (greedy)

– Apply, creating a new corpus

† Evaluation
– Reduction in error rate

– Errors in corpus after applying rule mi-
nus errors before applying rule

† Like decision lists, trains on all data
† Only gives point estimate, not distribution
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Summary

† User identifies relevant attributes (predictor variables)
† Automatic search through space of discriminators (boolean combinations of assignments to
predictor variables)

† Point estimate and probability distribution
† State = set of values for predictor variables
† Discriminator = set of states
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Grammatical inference: Regular grammars

† Canonical grammar exactly generates training corpus

a a

b

I T

a
b

a

b a b

b c

aa
abba
bab
bac

a
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Bayesian approach [183]

† Prior and posterior
– Canonical grammar has perfect fit to data

Highest conditional probability Pr(ojG)
– Canonical grammar generally is overly complex

Low prior probability Pr(G)

– Likelihood is posterior probability Pr(o; G) = Pr(ojG) Pr(G)
– Search for maximum-likelihood grammar

† Operation on grammar: merge two states into one
† Greedy search
– Consider each pair of states

– Compute posterior probability if we merge this pair

– Choose best pair, merge, iterate

– Quit if no pair improves likelihood
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Context-free grammars

† Canonical grammar: one production for each sentence
S ! sentence1
S ! sentence2

...

† Operators
– Merge nonterminals

– Structuring

Substitute (new) nonterminal X everywhere for sequence Y1; : : : ; Yn

Add new rule X ! Y1; : : : ; Yn
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Infering partial grammars: collocations

† Chuch, Gale, Hanks & Hindle [60]
– Use MI to induce »selectional restrictions

drink : hQtyi beer, tea, Pepsi, champagne, liquid, : : :

– Preprocess with Fidditch to find head-head pairs

† Smadja [177, 176]
– Use strength of association » MI
– Also use entropy of positional distribution

doctor: honorary *

nurse *

– Postprocess with Cass
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Finch [79]

† Word distribution vectors

a aardvark : : : zoologic zygote
fish 216 0 : : : 0 2
habitat 1 5 : : : 0 0

† Measures of vector (dis)similarity
Manhattan, Euclidean, dot product, cosine, correlation, rank correlation, divergence, : : :

† Cluster words using one of the distance metrics to form parts of speech
† Compute distribution vectors for part-of-speech sequences
† Cluster part-of-speech sequences to form phrase classes
E.g. ‘NP’: C8 (it), C8 C3 (her status), C1 C91 C3 (the following section), : : :
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Smith & Witten [180]

† Special role for function words
† Identify function words by high frequency
– Another way: bursty ! content word (Gale, p.c.; Jones & Sinclair [122])

† Cluster function words

F0: a, an, her, his, : : :
F1: he, I, she, then, : : :
F2: are, be, had, has, : : :

† Form chinks & chunks

F0 C C C F7 F0 C
a tiny bird sat in the tree
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Smith & Witten

† Collect content-word contexts

tiny : F0 C C F7
bird : F0 C C F7

† Cluster contexts to form content-word categories

F0 C24 C51 C40 F7 F0 C24 C51
a tiny bird sat in a hollow tree

† Build chink & chunk grammar

FP0 ! F0 C24 C51 C40 F7
FP1 ! F7 F0
FP2 ! F0 C24 C51 F$

† Generalize using substitution operator

CP1 ! C24 C51
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American structuralists

† Two measures of phrasehood
– Substitution (distributional similarity)

– Cohesiveness

† Substitution

he » the man
8
<
:

laughed
saw him
he saw

† Also used by Brill to induce trees
† Current information-theoretic instantiation:
– Substitution = divergence

– Cohesiveness = mutual information
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Zellig Harris [99]

† American structuralist
– Sought objective, operational definitions for linguistic concepts

– Phoneme, morpheme, word, phrase

† “From phoneme to morpheme” [99]

– Look at number possible continuations for a word
prefix

ap

8
>><
>>:

a(rtment)
e(rture)
h(id)
...

– Within morpheme, number of possible continuations decreases because of lexical gaps

a

b

c

p

z

r

i d

...a

h
...

...

– Jumps back up at boundary
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Example

h he hes hesc hescl hescle hesclev hescleve hesclever
a and al afraid alm ad an and
b built bad but
c came clever coyand
d dgo dead dad
e elp ehee ells entered ever er else
f ft orit ft

x xagon eroxed
y ype y yodeled ythed yde
z zoomed zoomed
6 26 26 9 6 [7] 1 1 26
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Harris

† Do it backwards, too
Agreement itdisturb smethatheleft
Cranberry words cran berry
Ambiguous prefix hed esparatelyneedsit

† Only practical way of getting utterances is elicitation
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Stolz 1965 [185]

† Chomsky: “We can be fairly certain that there will be no op-
erational criteria for any but the most elementary
[linguistic] notions”

† Seeks operational definition for phrase nonetheless
† Phrase = sequence of word-categories co-occuring more frequently than expected by chance
† “Bond”

BF(i) =
Pr(ti+1jt1; : : : ; ti)

Pr(ti+1)
BB(i) =

Pr(ti¡1jti; : : : ; tn)

Pr(ti¡1)
B(i) = 12[BF(i) +BB(i)]

Note: logBF(i) = I(ti+1; t1; : : : ; ti)

† Phrase boundaries at minima in B
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Stolz

† Estimates: hand-counted all cat-sequences in a 68,000-word corpus
† Test: 13 sentences from Scientific American
† Hand-parsed, differences arbitrated among three judges
† Example

Perception cannot be regarded as a one-way operation, to be understood ...
N X G L A P D A N Z L A
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Magerman and Marcus [146]

† Sequences of categories

B(i) = log
Pr(t1; : : : ; tijti+1; : : : ; tn)

Pr(ti+1)
= log

Pr(ti+1; : : : ; tnjt1; : : : ; ti)

Pr(t1; : : : ; ti)

† Estimate as product of n-gram MI for windows around i

† Find minimum in window, truncate sentence, repeat
t1 t2 t3 jt4 t5 : : :

t1 t2 t3 j t4 t5 jt6 t7 t8 : : :

– Alternative beginning and end of sentence

– Recurse to find constitutents inside these
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Bottom line

† Works OK for lowlevel phrases
† Important that one use categories, not words
– Else lexical association pulls phrases apart

a strong interest in

– Function words predict following function words better than following content words

of the wilderness

– Result

an interest in pictures of the Tetons

† Less good at higher levels of structure: here lexical associations are needed?
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Operational definitions of phrases

† Performance structures
† Naive parsing [96]

– Subjects divide sentence, redivide

a bear crashed through the gate

2
1

2
3

4

2.2 1.1 1.8 3.2 3.7

– Take average prominence of boundary
across subjects

– Dendograms (performance structure)

1

2

3

4

a bear crashed through the gate

† Also: transitional error probabilities, pausing, sentence comprehension
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Performance structures

† Differ from traditional phrase structures
– Flatter, no deep right branching

– Chunk boundaries stable, higher-level boundaries less syntactically predictable

† Prosodic phrases differ from traditional phrases in the same way

this is the cat that caught the rat that ate the cheese

– Selkirk: `-phrases [172]

† Gee & Grosjean [92]: use `-phrases to predict performance structures

† Bachenko & Fitzpatrick [18] turn it around and use Gee & Grosjean algorithm to predict
intonation for text-to-speech
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Linguistics

† The levels sentence, clause, phrase, word are traditional
† Quirk et al. [159] have VP stop at verb

[NP The weather] [VP has been] [AdjP remarkably warm]

† Postmodifiers of nouns often assumed Chomsky-adjoined

[NP [NP the man] [PP in the park]]

† Bloch 1946 [31] defines phrases prosodically: “pause-groups”

a little dog , with a big bone

*a little , dog with a big , bone
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Function Words

† Suzuki (1824)
– si : noun, verb, adjective – “[si ] denotes something”

– zi : particles – “[zi ] denotes nothing; it only attaches ‘voice of the heart’ to si”

† Aristotle
– Words without meaning: complementizers, conjunctions, etc.

– Words with meaning: nouns, verbs, adjectives

† Psychology
– Some aphasias selectively affect function words or content words

– Slips of the tongue interchange F-F, C-C, but not F-C
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Uniform syntactic treatment

† Function words have subjects and complements [5]

who

[that] Bill saw

CP

Bill

will leave

IP

far

in the back

PP

John’s

[the] book

DP

six feet
too long

DegP
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Motivation: Agreement in noun phrase

† English: Tensed verb is first verb, not e.g. head:

leaves
was leaving
has been leaving

subj

AGR VP

IP

possr

AGR NP

DP

† Yup’ik: noun phrase has AGR, too

angute-m kiputaa-Ø “the man bought it”
angute-t kiputaa-t “the men bought it”

angute-m kuiga-Ø “the man’s river”
angute-t kuiga-t “the men’s river”

† Turkish
el “hand”
senin el-in “your hand”
onun el-i “his hand”
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Motivation: Gerund

† The Poss-Ing gerund is a gryphon

[NP John’s [VP fixing the car]]

DP

John’s

-ing VP

fix the car
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S-projection

† Whether to “count” function words as heads

fine grain (c-projection) coarse grain (s-projection)

Bill

will

leave

IP

VP

CP

that

John’s

e

book

DP

NP

PP

in

Bill

will

leave

IP

VP

CP

that

John’s

e

book

DP

NP

PP

in
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Chunks and clauses

† Chunk: connected piece of tree covered by an s-projection
† Clause: chunks dominated by same clausal node

D

DP

A

AP

N

NP

the new president

N’

N’

P

PP

D

DP

N

NP

of our society

I

IP

V

VP

would like

I

IP

V

VP

to propose

D

DP

N

NP

a toast

Subj

of

toInfl

Obj
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Syntactic usefulness of chunks

† No chunk within a chunk [7]

⁄ [a proud [of his son] man] [a man] [proud] [of his son]
⁄ [a [so tall] man] [so tall] [a man]
⁄ [a [six feet] tall man] [six feet] [tall], [a six-foot tall man]
⁄ [was [every three weeks] fixing] his bike [was frequently fixing] his bike

† More precisely, F-C selection must be in same chunk
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General [2, 3, 4, 35, 36, 50, 61, 62, 81, 82, 84, 116, 117, 118, 129, 143, 144, 148, 200]

Tagging [10, 19, 28, 56, 57, 66, 90, 91, 124, 125, 126, 131, 138, 153, 163, 168, 188]

HMMs [21, 22, 23, 24, 25, 49, 64, 67, 78, 115, 119, 155, 157, 160, 161]

Search [156]

The Inside-Outside Algorithm [85, 86, 136, 137]

Regression [20, 30, 29, 38, 41, 42, 45, 46, 154, 162]

Partial Parsing [6, 7, 8, 9, 11, 37, 43, 47, 48, 51, 52, 53, 57, 58, 112, 65, 69, 70, 71, 72, 73, 74, 75, 76,
88, 100, 101, 102, 103, 104, 107, 110, 113, 114, 120, 121, 127, 132, 133, 134, 140, 142, 145,
147, 149, 152, 163, 164, 165, 166, 169, 178, 182, 186, 190, 191, 192, 194, 195, 196, 197]

Grammatical Inference, Acquisition [1, 12, 13, 14, 15, 16, 32, 33, 39, 40, 55, 58, 79, 80, 83, 93, 94,
109, 111, 130, 167, 175, 179, 181, 184, 187, 189, 199]

Mutual Information Parsing [98, 99, 146, 185]

Prosody and Performance Structures [18, 26, 27, 31, 63, 92, 96, 97, 105, 106, 141, 151, 170, 171, 172,
173, 193]
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