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3.2 Zusammenfassung

We propose to investigate the logical problem of language acquisition, as applied
to lexical representations. In particular, we assume that syntax and semantics are
projected in a nontrivial sense from the lexicon. It is the lexical representations
necessary to this projection of syntactic and semantic structure whose acquisition
we wish to investigate. Moreover, we aim to forge a link between the linguistic and
cognitive foundations of computational linguistics, and the statistical methods
that are currently permitting computational linguistics to make great strides in
lexical acquisition and broad-coverage parsing.

The acquisition of syntactic parameter values has received rather more at-
tention than the acquisition of the lexicon. It is understandable that syntax
has received more attention than the lexicon in studies of universal grammar,
inasmuch as the lexicon is viewed in the first instance as the repository of idio-
syncratic, unpredictable information. Most generalizations of interest are to be
drawn in the area of syntax, or at best the interaction of syntax and lexical seman-
tics. But the view that the lexicon is the repository of all that is idiosyncratic and
unpredictable means that acquiring the lexicon is actually a much more challen-
ging problem than acquiring the syntax. And as lexicalized grammars push more
and more syntactic variability into the lexicon, the problem of acquiring lexical
information becomes ever more challenging. That is the problem we would like
to address with this project.

Because of the lexicon’s variability and breadth, we expect that methods that
are appropriate for its acquisition will not necessarily be traditional linguistic
methods. Rather, novel corpus-based methods being developed in computational
linguistics strike us as particularly well-suited to lexical acquisition. By looking at
the behavior of words in large corpora, we intend to assign them to the appropriate
lexical-semantic class provided by UG, and to determine more refined, word-
specific behavior, particularly with respect to selectional restrictions.

Linguistically significant behavior is generally not observable in an unstructu-
red stream of words. This introduces a bootstrapping problem. To determine their
syntactic behavior, we must assign words to the correct syntactic and lexical-
semantic categories, but to perform that assignment, we need to observe the
words’ syntactic behavior.

We address this problem by making two divisions. We divide the parsing
problem into the subtask of grouping words into ‘chunks’, and the subtask of doing
sentence-level parsing. And we divide the lexical information used in parsing into
coarse category information, and fine-grained information for distinguishing the
behavior of individual words. The fine-grained information consists predominantly
in relations between pairs of words that are heads of their respective constituents,
what we will call head-head information.

To ‘prime the pump,’” so to speak, we recognize chunks based on coarse cate-
gory information. Given chunks, we can use coarse category information at the
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chunk level to do rough sentence-level parsing. This rough framework allows us, in
turn, to induce finer-grained head-head information, particularly at the sentence
level, but also within chunks (e.g., between nouns and the adjectives that modify
them). This method can be iterated to improve the quality of acquired informa-
tion. Induced head-head information can be used to improve chunk recognition
and sentence-level parsing; and re-induction using improved skeletal parses yields
cleaner head-head information.

Finally, it is important to note that lexical acquisition, as described here,
represents a unique convergence of linguistic questions and more application-
oriented computational issues. So often, one faces a choice between addressing
scientific concerns and furthering practical ends. But here we have the happy
situation that both kinds of considerations point in the same direction. So, for
example, the division of parse trees into chunks and sentence-level dependencies
also contributes to parser efficiency and robustness. And the emphasis on breadth
of coverage is one of the most important criteria for practical applications.

3.3 Stand der Forschung
3.31 Projections

There is a growing consensus in the study of phrase structure within the GB
framework that both functional elements and thematic elements participate fully
in the X-system, in the sense that both types of element take subjects and com-
plements, and project intermediate and maximal projections. At the same time,
lexical elements are distinguished in that they are ‘semantic’ heads (s-heads) of
larger-scale projections (s-projections) [1, 32, 65]. Thus, the modal is the syntactic
head of the sentence, but verb is the s-head; likewise, determiner is the syntactic
head of the noun phrase, but noun is the s-head.

The words that belong to a given s-projection often form a contiguous sub-
string of the sentence. This is almost always the case in English—and more em-
phatically so if we recognize that prenominal adjectives and their adverb modifiers
do not appear with functional satellites, hence, arguably, do not head indepen-
dent s-projections. A contiguous set of words belonging to the same s-projection
is a chunk. In the tree in figure 1, syntactic projections (ec-projections) are repre-
sented by vertical lines connecting head to parent, s-projections are represented
by circled sequences of nodes, and chunks are the boxed word-sequences.

An additional level of grouping, represented by the large dotted boxes in the
figure, also proves useful. Define a clause-projection to be an s-projection that con-
tains an IP node. A non-clausal s-projection belongs to the first clause-projection
that dominates it. In most cases, the set of s-projections (chunks) belonging
to the same clause-projection form a contiguous substring of the sentence. A
contiguous sequence of chunks, all belonging to the same clause-projection, is a
simplex clause. In figure 1, there are two clause-projections, one headed by like
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Abbildung 1: A tree partitioned into chunks. Circled groups of nodes are s-
projections, chunks are boxed, and simplex clauses are marked by large dotted
boxes.

and one headed by propose. Grouping together chunks that belong to the same
clause-projection yields the simplex clauses marked by the large dotted boxes.

Chunks as phrasal units play a significant role in accounting for prosody, for
certain kinds of psycholinguistic data, and for certain otherwise mysterious syn-
tactic constraints [3, 7]. There is a series of psycholinguistic investigations into
performance structures, that is, hierarchical sentence structures that are operatio-
nally defined. The measurements from which such structures emerge include naive
parsing, transition error probabilities, and pausing [43, 48, 49, 23, 28, 33|. These
structures have been noted to correspond closely to prosodic phrases [28, 59, 60],
and have been used to generate prosody in text-to-speech systems [8]. What is of
particular interest to us is their correspondence to chunks [7].

3.32 Parsing

Motivation of an entirely different sort for chunks and clauses comes from prac-
tical parsing considerations. In the last few years, statistical methods have been
developed that have suddenly made it possible to deal with unrestricted natural
text, instead of being constrained to “toy” domains [20, and numerous others].
Much of the effectiveness of these methods can be attributed to the possibility
of modularizing the parsing problem, and attacking the pieces separately. So, for
example, the first prominent success was obtained by isolating the problem of
part-of-speech disambiguation. Disambiguating parts of speech proved to be so-

4



Rooth/Abney BT

luble by a fairly simple statistical model [17, 22]. To proceed along these lines,
it is natural to seek ways of breaking the remainder of the parsing problem into
manageable pieces.

S-projections—or equivalently, chunks—provide an obvious possibility. We can
divide the problem of assigning a structure to a sentence into three parts:

i. Identifying the s-projections, i.e., recognizing chunks;
1. Assigning internal structure to s-projections; and

ii1. Sentence-level parsing, i.e., assembling s-projections into a complete phrase
structure.

The third task, sentence-level parsing, to a large extent consists in identifying
head-head relations, for which we will also use the term dependencies.

Task (i), recognizing chunks, does turn out to be independently soluble, with
respectable accuracy. Ejerhed [25, 24] discusses both finitary and stochastic me-
thods for recognizing noun phrases and simplex clauses. Abney [2] describes a
deterministic method for general chunks that achieves approximately 95% accu-
racy. And Rooth [57] describes a stochastic method for recovering noun phrase
chunks with comparable accuracy. Numerous other researchers have used chunk-
like units in applications where efficiency and robustness are at a premium, e.g.,
for data extraction [39], or induction of linguistic information from corpora [46].
Chunks have also been used to improve the robustness of traditional parsers [62].

Tasks (ii) and (iii) have not been addressed in the literature in the context of
the parsing methodology sketched above. Our own pilot investigations indicate
that the task of recognizing sentence-level dependencies can be solved with 90—
95% accuracy by a small set of deterministic rules. The largest source of error is
prepositional phrase attachment. Fortunately, statistical methods are known for
effectively resolving PP attachment [36]. The task of assigning internal structure
to s-projections has been previously addressed neither in the literature nor by us,
but it is at least of limited scope, inasmuch as chunks rarely contain more than
a handful of words.

We aim to improve current performance on each of these tasks by exploring
a range of stochastic models and search strategies. We find it useful to clas-
sify parsing techniques along two dimensions. With respect to their approach to
probabilities, we identify three types of parser:

e Non-stochastic, e.g. Abney’s parser and Ejerhed’s finitary parser;

e Bayesian (‘reversing’ a stochastic generation model), e.g. the standard op-
timization criteria for hidden Markov models and stochastic context free
grammars;

e Regression models, including linear regression, CART [12], and
transformation-based parsing [14].
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The second dimension is search strategy. There are three categories of particular
interest:

e Deterministic algorithms [47, 35, 37, 2];
e Exhaustive search, as in the Viterbi algorithm [64, 9, 54];

e Heuristic search, particularly best-first and beam search [51].

3.33 Lexical Representations
Representation of complementation/adjunction possibilities

Several recent theoretical approaches advocate restrictive definitions of the in-
terface between syntax and the lexicon, where only certain lexical information is
visible to the syntactic component [11, 53, 31]. A central idea is that the lexicon
delivers a bag of complements, annotated with case and category information,
and ordered by relative obliqueness (or deep order) of complements. (In certain
theories, additional information is present, such as an optional marking of an ex-
ternal argument.) To a considerable extent, such representations are appropriate
for the parsing model we have sketched. In particular, the representation is quite
extensional, overtly representing the information about complementation possi-
bilities that the parser requires. Also, for the most part, we can reasonably expect
to acquire such representations, that is, to induce the correct representation for
individual words based on their observable behavior. A few caveats are in order,
however.

In theoretical approaches, a very restricted notion of complement is often em-
ployed, excluding statistically very important combinations. For instance, in some
approaches the prepositional phrase in the combination member of the board is
an adjunct rather than a complement. This association is nonetheless statisti-
cally important inasmuch as, in newspaper text, most occurrences of member are
accompanied by a complement/adjunct of-phrase. Even in uncontroversial cases
of adjunction, there seems to be a continuum of lexical conditioning, ranging
from adjuncts which clearly introduce an external predication (such as because-
clauses), through partially lexically conditioned adjuncts (such as spatial and
temporal ones), to adjuncts which are quite intimately connected with the lexical
semantics of the head. Once one undertakes the project of learning the combina-
tory properties of a large lexicon, one has to deal with a forbiddingly large variety
of lexical conditioning.

The simplest move is to adopt a representation which does not distinguish
between the two kinds of association. We think this is appropriate and perhaps
unavoidable for a large class of lexically conditioned adjuncts. However, in other
cases adjuncts are distinguished by their applicability to very broad classes of
verbs, and adopting a distinct representation for adjunction is both theoretically
and computationally attractive.
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Selectional Constraints and Semantic Types

The term selectional constraint refers to semantic conditions imposed by verbs
(more generally, heads) on the phrases they syntactically select. As these are ty-
pically conditions on the head of the selected phrase, they are a major source of
constraint on the head-head dependencies that are the object of sentence-level
parsing. Semantically, it is clear why such head-to-head relations give informa-
tion about selection: usually, a single variable (or in other terminology, discourse
referent) ends up as an argument of the head of the complement and of the verb.
(Exceptions arise with intensional verbs and with intensional modifiers such as
fake in a nominal argument.) For instance, transitive uses of aspectual verbs such
as begin and end select event-denoting objects, such as discussion and investiga-
tion:

(1) a. ... the traffic-safety agency ended its investigation of the floor joints
shortly after Thomas Built executives met with Deputy Transportation
Secretary James Burnley .

b. He intends to begin an investigation of the matter.

c. Mr. Wright ended a discussion of the incident by saying , “Let’s move
on.” ..

d. Walker Energy Partners said it began a preliminary discussion with a

potential merger partner or partners , but it declined to name the suitor.

The semantic representation of begin the discussion includes the predications
along the lines of begin(z) and discussion(x). Thus the nominal head discus-
ston must at least be compatible with the property of being an event.

It is a commonplace in computational linguistics that selectional relations are
required for filtering or ranking parses. As an example, consider the following.

(2) ... end the shareholder meeting on Friday.

Meeting could in principle be the head of the direct object of end, or it could be a
post-modifier, with shareholder as the head of the direct object. The fact that end
selects an event in the object position should be exploited to boost the ranking
of the former analysis. The same point can be made about dependencies within
chunks, such as dependencies between noun heads and their nominal, adjectival,
and participial modifiers. In the example above, the fact that shareholder is a
reasonable modifier for meeting supports an analysis where meeting is the head
of the noun phrase chunk following end.

Selectional constraints (under many accounts) assume a hierarchy of semantic
types: selection is not for specific lexical items, but for semantic types like event
(in the example just given) or human. There is a large literature on semantic-type
hierarchies, from many perspectives, including linguistic [41], artificial intelligence

[26, 63], and psychological [50].
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A hierarchy of semantic types useful in characterizing selection is likely to
be finer-grained than what would be motivated by purely linguistic considerati-
ons. Generative work on lexical semantics has been concerned with identifying
aspects of lexical representation which are relevant to syntax, such as the unerga-
tive/unaccusative distinction, deep complement order (or scale of obliqueness
of complements), gross distinctions of semantic type of complements (indivi-
dual vs. proposition vs. indirect question), gross aspectual distinctions (state
vs. event/process), and the like. While some authors consider very fine classes of
verb meaning [44], there is a consensus in recent work on a theory which captures
linguistically relevant classes, while saying nothing about a wealth of distinctions
which are semantically real, but linguistically inert [11, 31, 40]. In the more radi-
cal versions of these theories, agentive transitive process verbs with meanings as
intuitively distinct as read and eat are treated as linguistically indistinguishable.

In a project concerned with bootstrapped extraction of lexical information
from corpora, it is necessary to model the finer-grained semantic types, in addi-
tion to those which are relevant to the strictly linguistic module. For instance,
we would want to take advantage of the obvious selectional differences between
read and eat in a parser. Capturing fine-grained selectional distinctions would be
desirable even if our primary goal were to induce linguistic lexical representati-
ons from examples of use. As has been pointed out in the literature on human
acquisition of the lexicon, lexical sense ambiguity, syntactic ambiguity, and inde-
terminacy between complementation and adjunction make this task difficult. To
take the simplest case, observing the sentences (3) below does not unambiguously
indicate whether the language learner should induce a single lexical representation
for order consistent with the semantics of both pizza and retrial, or two lexical
representations.

(3) a. John ordered a pizza.
b. The judge ordered a retrial.

In this case, the correct choice presumably involves two senses. A similar point ari-
ses with argument alternations; in the transitive-intransitive pair (4), the subject
and object positions should be identified, while in (5), the two subject positions
should be identified.

(4) a. The government decreased the tax rate.
b. The price decreased.

(5) a. Her assistant wrote the tech report.
b. My sister writes.

In both these cases, selectional constraints—of a kind which can be captured by
a fine-grained semantic type model—would plausibly help in matching up the
argument positions, and thus in identifying the correct linguistic lexical represen-
tations.



Rooth/Abney BT

In computational linguistics, selectional constraints have been treated pro-
babilistically [18]. Resnik’s dissertation [55] combines a probabilistic account of
selection preference with symbolic knowledge, the Wordnet psychological type
hierarchy [50].

3.34 Acquisition

To summarize the discussion of the previous section, we require three types of
lexical information:

1. The structured lexical representations that determine complementation and
adjunction possibilities;

ii. An account of the semantic space, perhaps in the form of a semantic-type
hierarchy; and

iii. Selectional constraints that relate the two, by putting semantic-type restric-
tions on the fillers of roles in the lexical representations of verbs.

A central concern of the proposed project is how these types of lexical information
can be acquired. As linguists with a cognitive perspective, our ultimate concern
is human acquisition, but we approach the problem at a certain level of abstrac-
tion. We intend to explore, in both breadth and detail, the question of how the
information may in principle be acquired—what Lightfoot [45] calls the ‘logical
problem’ of language acquisition.

If the class (i) of possible lexical-semantic representations is taken to be fixed,
i.e., provided by universal grammar, the problem to be addressed is that of assi-
gning individual words to classes. Here the literature on statistical classification
problems is relevant. Diagnostics are known for assigning verbs to lexical-semantic
classes, but many diagnostics used in the literature are accessible neither to a child
nor to an automatic learner. On the other hand, we expect there to be surface
properties that are informative with respect to class assignment, but that have
not been identified in the literature, inasmuch as they only reveal themselves
in statistical tendencies. Discovering such properties, and determining how to
weigh evidence from different diagnostics, are problems with natural solutions in
statistical classification techniques.

Selectional restrictions (iii) and semantic types (ii) can be induced from cor-
pora. Church et. al. [19] pointed out that using a text corpus and a parser, one
can get access to data relevant to selection by compiling tables of the frequency
of head-head combinations: we can tell that end is an event-selecting verb by
observing that it occurs frequently with complements the heads of which entail
the property of being an event, for instance discussion, trial, party or meeting.
The same frequency tables also contain information about the argument type
hierarchy. We can recognize discussion as an event-denoting noun, for example,
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by observing that it occurs as the object of verbs like begin, end. Initial studies
[13, 34, 36, 46, 55, 61] illustrate that both syntactic- and semantic-type frames
can be induced by statistical techniques. One general procedure is to define a
measure of distributional similarity, such as cosine or relative entropy [42], then
to use the similarity measure to cluster words into classes [16, 27, 30, 52, 58].
Distributionally-defined classes typically do not correspond cleanly to semantic
classes, in that there is a large confound of syntactic-class information in the
distributional data. However, by using the chunk parser to select only pairs of
content-word heads, we can control the syntactic environment, and in this way,
we expect to eliminate most of the syntactic confound, and obtain much cleaner
semantic classes.

3.4 Eigene Vorarbeiten

We have already mentioned most of our own relevant prior work. The first gene-
ral account of projections of functional elements, and the concomitant distinction
between c-projection (i.e. X-projection) and s-projection, is given in [1]. The re-
lation between s-projections and chunks is proposed in [4], and further developed
in [3, 7].

[2] describes a deterministic parser for chunks and simplex clauses, based
on cascaded finite-state recognizers. The notion of pattern reliability (related
to regression) is explored in [5, 6]. [57] describes a stochastic tagger and noun-
chunk recognizer using Viterbi decoding.

In the area of selection, Hindle and Rooth [36] propose a probabilistic account
of a syntactically restricted class of selectional restrictions, and show how they can
be acquired from a large text corpus. The model is applied to disambiguating a
class of prepositional phrase attachment ambiguities. [56] describes an experiment
on semantic type induction based on EM estimation.

3.5 Ziele, Methoden, Arbeitsprogramm und Zeitplan
3.51 Ziele

Goals of the research are:

i. The construction of lexicalized, statistical, free text partial parsers for Ger-
man and English.

ii. Investigation of the acquisition of lexical representations, with empha-
sis on semantic type information and representation of subcategoriza-
tion/adjunction possibilities.

Subsidiary goals and products of the research are:

10
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iii. Large automatically parsed corpora, for use in linguistic and lexicographic
research.

iv. Computational lexicons induced from corpora.

v. Statistical language models for German and English, assigning probabilities
to arbitrary sentences.

3.52 Methoden

Our general strategy is to take advantage of linguistic knowledge and hand-built
rules when they are already available (as in the case of morphology and syntactic
theories determining a motivated notion of chunk) or can be obtained with a mo-
derate amount of effort (as in the case of chunk grammars), but to use automatic
techniques to fill in much of the information used by the parser, in particular
probability parameters. In order to allow different parsing strategies to employ
common components, information and computational components are modulari-
zed; different sources of information are combined in a probabilistic framework.
Finally, we aim to get preliminary versions of all essential components working
quickly, in order to parse large corpora and extract information essential in later
stages of research.
Below, we outline methods and computational approaches.

Chunk grammars and clause extraction

The chunk grammars will be obtained with conventional techniques, namely
an iterative process of hand labeling modest amounts of data, writing grammars,
and parsing corpora using a preliminary version of one of the parsers. For English,
much of the relevant information can be extracted from treebanks. The grammars
will be tuned and improved throughout the project, but chunk grammars for
English and German with good coverage are to be written in an initial period of
concentrated effort. This work is facilitated by the availability at SfS and IMS
of German corpora labeled by hand with parts of speech (Stuttgart reference
corpus), and of working part of speech taggers.

Reasonable performance in identification of clauses given chunks can be achie-
ved with regular-expression matching [2, 24]. We will use this approach initially,
subsequently investigating more systematic parsing techniques, and statistical
approaches to clause identification.

Chunk parsing algorithms

We will develop several chunk parsing techniques in parallel, differing in search
strategies and parameter estimation techniques. The initial phase of research aims
at porting and extending chunk parsers using deterministic and Viterbi decoding

11
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techniques, and applying them to German and English corpus data. In later
phases, we will incorporate selectional constraints into the parsers, and investigate
other parsing techniques, in particular local statistical decision rules.

Abney [2] employed a deterministic chunk-recognition method. A regular-
expression grammar for chunks is written by hand, and the longest-match heuri-
stic is used to discriminate among alternative parses. Using this technique, it is
easy to get a parser working quickly with quite good accuracy, on the order of
95% measured in chunks correctly recognized. This is an appropriate technique
for use in the initial writing of chunk grammars.

Our application of Viterbi decoding will assume separate probability models
for chunk contents (sequences of parts of speech constituting a chunk) and for
the sentence-level contexts in which chunks appear. Given content and context
models, an efficient search algorithm finds a globally optimal parse. The model
described by Rooth [57] used a simple content model, a list of possible part
of speech patterns with an associated probability distribution, and a trigram
model of sentence-level context. The latter specifies a probability distribution
over sentence-level phrase categories conditioned on the two linearly preceding
phrase categories. Below, we will call this model a hidden Markov model (HMM)
for chunks.

Left-to-right recognition

Viterbi decoding is a special case of the Bayesian method, in which one defines
a probability distribution over partly-hidden structures, and in which parsing
consists in reconstructing the most-probable complete structure that is consistent
with the visible parts one is given as input. A disadvantage of this method is that
it requires a global optimization; it is not possible to compute the probability of a
particular piece of hidden structure during a left-to-right parse without estimating
the probabilities of all relevant complete structures, which is expensive to do with
any accuracy, and moreover implausible as a model of human performance.

For this reason, deterministic methods are of computational and psychological
interest. The goal is to construct a model for the probability of a recognized chunk
being correct. Probabilities can be conditioned on the state of the recognition
automaton, as well as on cross-alternative properties such as the longest-match
heuristic. This technique allows one to quantify the degree of uncertainty of local
ambiguities, for example. In the limit, as local uncertainties approach zero, the
left-to-right method approaches deterministic parsing.

Estimation of probability parameters

Large treebanks are available for English, and probability parameters can in
many cases be computed directly as means in a training corpus. In the absence of
a treebank, the training material consists simply of a text corpus, and probability

12
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PP[ueber]

A P
ueber vier Jahre AN i t
PP[zu R
/P[ \] / > _ fuehren wuerde

sein Plan

NP-gen PP[in-DAT]

zu einer Halbierung

der roten Zahlen  im US-Staatshaushalt

Abbildung 2: Dependencies in a German clause. Starting at a node, the licensing
element can be identified by following the solid edges downwards to a labeled
constituent. The licensed element is identified following one dotted edge, and
then solid edges, downwards to a labeled constituent.

parameters must be derived indirectly. In a maximum likelihood framework, one
aims to identify the parameters which maximize the probability of the observed
corpus; this problem is computationally intractable in the cases of interest. Ho-
wever, constrained optimization techniques can improve the fit between model
and data (specifically, the probability of the data given the model) up to a local
maximum. We will emphasize the approach originated by Baum and his collea-
gues [10]. The forward-backward algorithm is used to iteratively re-estimate the
parameters of hidden Markov models [54]. It can be viewed as a graph compu-
tation operating on a restricted kind of directed acyclic graph. The chunk HMM
requires an extension to a general DAG, which we will implement.

Combined with the hand-written chunk grammar, we expect this approach
to generate a statistical chunk parser for German comparable to what could be
obtained with a parsed training corpus. At least in initial stages, we do not aim
to induce chunk grammars themselves from data; rather, given chunk grammars,
probability parameters of the chunk parser will be induced. We believe this is the
quickest and surest route to a basic level of performance.

Recognizing and acquiring syntactic dependencies

The venue for this problem, which is of central importance and interest, is the
area of syntax between the chunk and clause levels. Using the above methods for
chunk and clause identification, a large corpus is mapped to a series of clauses,
each partitioned into chunks. In order to identify structure within clauses, large

13
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NP

The U.S. and Soviet Union ii \\\\\
- NP
are holding i / -
technical td/ /

PP{abou] PPLby] PP{of] PR[ir]

about possible repayment by Moscow  of $188 million in pre-Communist Russian debt
Abbildung 3: Dependencies in an English clause.

amounts of lexical information are required; we hypothesize that the best way
to obtain this information is with a bootstrapping procedure. Initially, we will
look at the problem of learning probabilistic subcategorization /adjunction frames
annotated with only syntactic information, in particular category and case. This is
to be done for a large lexicon, essentially the whole lexicon represented in a corpus
of tens to hundreds of millions of words. A special case of this problem, restricted
to certain simple grammatical relations, was studied for a large corpus and lexicon
by Hindle and Rooth [36]. Other experiments have involved a broader class of
frames, but have been limited to small samples of lexical items, small corpora, or
have been based on statistical techniques which identify only the more common
frames. Thus a broad-scale experiment has not yet been performed. Furthermore,
we suspect the problem to be interestingly different in German, because of looser
phrase order.

Two methods will be investigated, distinguished by the kinds of representati-
ons constructed. Imagine that the clauses in (6) have been identified and chunked
by an an initial version of the parser.

(6) a. (daB) [sein Plan],. [iiber vier Jahre] .., ., [zu einer Halbierung]... .
[der roten Zahlen] . _ [im US-Staatshaushalt],.. ., [fiihren wiirde]

b. [The U.S. and Soviet Union],, [are holding],, [technical talks],, [about

possible repayment];p ., ..., [by Moscow],. . . [of $188 million] in pre-

Communist Russian debts|

PP[of] [

PP[in]

A dependency analysis of such a clause can be equated with a headed binary tree;
the correct analysis of (6a) is the one in figure 2, and the correct analysis of (6b)
is the one in figure 3. Each node represents a dependency between the s-head of
its strong branch and the syntactic head of its weak branch; thus the top node
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el
& £ I w =
e o 9 - M g5 & oz o= 9
Pt FE. T . o = ] =1 -
88,5 E 3 $£:fs fsg § 2 228 5 % 8w EZg
s 58 0 § & 9 98 28 o A a4 {8 & GF w5 @ lf 5 F 8
acquire| 16 1 1 2 35 5 77 87 29 19
boost 1 1 2 1 18 11 1 39 21 5 28 59 10 1 19 1
buy| 16 2 2 48 2 53 1 36 348 107 190 29 2
clim 8 1 2 10 13
cut 104 10 11 1 66 64 11 5 2 30 5
decline 2 3 18 2 1 13 9 16 1 3
drop 1 11 19 1 2 30 5 7
dum 1 3 2 10 10
fa 21 132 1 2 14 171 38 33 1 28
gain 20 3 211 62 9 25 4 25 28
., hold| 18 7 1 1 22 3 5 68 121 30 3 1
increase 6 3 2 25 5 26 8 1 3 26 36 2 1 36 75 2 11 16
fump 2 3 2 8 9
ower 20 2 1 23 83 55 16 1 2 4
plunge 3 2 14 4 2
purchase 8 5 2 117 6 95 24 20 6
push 1 2 2 1 1 3 44 20 1 4 16 1 1 2 1
raise 23 5 28 8 5 131 149 26 5 74 46 11 1
reduce 9 1 1 76 105 3 5 1 22 55 8 9 41 2 26 21
retain 1 1 13 17 21 1 3 1
rise 13 9 136 18 2 2 3 52125 18 19 1 1 1 2 22
sell |114 2 1 40 6 72 2 1 12 8 48 243 144 149 104 2
slash 17 4 9 20 6 1 1 3 3
trade 1 1 2 2 2 9 722 2 37 5 1

Tabelle 1: Frequency counts for 24 verbs and 24 object heads.

represents a dependency between the s-head of [fiihren wiirde], namely [fiihren],
and the nominative DP [sein Plan]. It is reasonable to enforce constraints such as
the verb complex being the head of the clause, and noun phrases and prepositional
phrases taking complements only on the right. This leaves us with a number of
possible syntactic analyses in each case; the simplest strategy is to enumerate the
analyses (possibly using a chart representation to share structure) in each step
of an iterative re-estimation of lexical parameters. An alternative is to consider a
flat representation of dependency possibilities between chunks, without building
a tree or enumerating multiple analyses. This would have the disadvantage of not
enforcing constituency constraints, but the possible computational advantage of
reducing the number of representations computed.

As examples of the information to be learned by this procedure, the German
lexicon should represent a statistical version of the fact that fihren can take a
zu prepositional dependent and that Halbierung can take a genitive dependent.
The English lexicon should represent the fact that repayment can take both a
by prepositional dependent and an of prepositional dependent. At this level one
would not deal with semantic selection, for instance the fact that an DP headed
by Zahlen is a semantically appropriate genitive dependent of Halbieriung.

Statistical models of selection and semantic type

Our basic approach is to use the parser to identify head-head dependencies
in a corpus, and then treat the problem of describing what dependencies are
possible as a matter of modeling word-word bigrams. This brings our project into
contact with work on word n-gram language models for speech recoginition [9,
etc.]. We intend to experiment with a variety of techniques discussed in this
literature, but consider approaches involving classes or clusters [15, 52, 56] to be
of particular interest, because in the context of our work, they appear to have a
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acquire| 16 35 b 77 87 29 19 1 1 2
buy| 16 48 53 36 348 107 190 29| 2 2 1 2 2
dum 1 3 2 1 10
hol 18 7 22 5 68 121 30 3 11 3
purchase 8 5 17 6 95 24 20 6 1 2
retain 1 13 17 21 1 3 1 1
sell |114 40 72 48 243 144 149 104| 2 2 1 2 12 8
trade 1 2 722 2 37 5| 1 2 1 2 9
climb 8 2 10 13 1 1
decline 1 3 2 3 18 13 2 1 9 16
dro 1 11 19 21 2 30 7 9 6 5
fall 1 2 132 1 2 14 171 28 38 33
. gain 3 25 4 20 2 11 62 28 9 25
jump 2 3 2 8 9
rise 2 1 1 1113 9 136 2 3 52 125 22| 18 18 19 2
plunge 2 3 2 14 4
boost T T 28 59 10 T T T T 2 1T 18 39 2T 5 T 19
. cut 5 2 1 104 10 11 66 64 11 30 5
increase 6 8 1 36 75 2 3 2 1 3 25 526 26 36 2 11 16
lower 1 16 1 20 2 23 83 55 2 4
push 1 2 1 1 4 16 1] 2 3 1 1 44 20 1 2
raise 8 5 74 5 1] 23 5 28 131 149 26 46 11
reduce 9 5 9 41 2 1 1 1 76 105 22 55 8 26 21
slas 1 1 17 4 9 20 6 3 3

Tabelle 2: The same counts in another order.

natural foundation in lexical semantics.

Consider a concrete example, taken from Rooth [56]. Table 1 gives frequency
counts for verb-object pairs in a corpus of about six million words, for twenty-four
selected verbs and twenty-four selected nouns. The missing entries correspond to
frequencies of zero in this corpus. However, some of the combinations with zero
counts—for instance dump stake and climb yen—are intuitively plausible. The
idea is to fill in these zero entries by identifying three semantic types in the table,
represented by the diagonal blocks in table 2, where rows and columns have
been rearranged. The types roughly correspond to (i) a concept of ownership; (ii)
dimensions such as dollars and stock market points; (iii) abstract objects such as
prices which move along linear scales. The types are two-dimensional, classifying
both verbs and nouns. They can be used to fill in null entries in the sample, since
while dump stake has a zero count, there is good evidence that both dump and
stake belong in the first type.

The structure suggested by the blocks is given a probabilistic form in a latent
class model of word bigrams. A verb-noun pair is viewed as being selected by
(i) probabilistically picking a semantic type, and (ii) given the semantic type,
independently picking a noun and verb using probability distributions characte-
ristic of that type. Such models can be derived automatically; Pereira et al. [52]
do this using a clustering technique, and Rooth [56] uses the statistical EM al-
gorithm, a method of estimating latent class models proposed by Goodman [29].
Factor analysis techniques, such as singular value decomposition [21, 58] are also
relevant.

In many cases, the two-dimensional clusters are semantically motivated, in
that they are tied together by entailments of predications; thus the predications
underlying the frequency counts in the first block have a common entailment that
the entity corresponding to the object is owned (by somebody at some time).
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Since the modeling of selection has a central role in this project, work on this
will begin immediately, and proceed with some independence of development of
the parsers. With a preliminary version of the chunk parser, several grammatical
relations (such as verb-object in English, or head noun-modifier in German and
English) can be reliably identified, and bigram tables computed from a large
corpus. While these data will be limited to a few grammatical relations, they
are realistic in the sense that they involve a large vocabulary and data drawn
from a large corpus. We believe that they reflect nearly the full complexity of
the problem of inducing selectional constraints and semantic types. Techniques
for estimating probability distributions on word bigrams and inducing semantic
types will be developed and tested with these data, before being integrated into
the parser.

Integrating selection information and parsing

The parser architecture will be such that probabilistic theories of selection can
be cleanly integrated. The techniques and results from the previous two sections
will be combined, the goal being to induce a complementation/adjunction lexicon
annotated with statistical models of the semantic type of dependent elements, in
addition to their syntax.

In the case of models of chunks, we will be working with linguistically moti-
vated grammars, and dependencies can be read off parses. One simple model is
to view the lexical content of the head of each modifier phrase as being probabi-
listically conditioned on the head it modifies.

In the case of dependencies between chunks, we will investigate both the obvi-
ous technique of constructing a representation of trees determining dependencies
in a given clause, and an approximate approach which evaluates possible head-
head dependencies without constructing a representation of tree structures.

Induction of linguistic lexical representations

It is an open question whether the results of the learning procedure just out-
lined will contain information representing (either directly or indirectly) all lin-
guistically relevant features; we suspect not. Building on the results of the above
experiment, we will investigate the problem of learning such features from corpus
data. The solution may lie in a refined theory of semantic types, with semantic
notions such as agency having an a priori status (fixed by UG) in identifying
linguistically significant classes of verbs.

3.53 Arbeitsprogramm und Zeitplan

A summary of the project work items is given in figure 4. The work can be
divided roughly into three phrases, for which we may use the rubrics grammar,
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Hand-written chunk Extraction of E parameters
grammarsof G and E from Treebank

Heuristic chunk parser

Implementation of graph Chunk HMM parser for E Determ. statistical parsing
FB agorithm (preliminary) E  (preliminary)
Chunk HMM parser for G Determ. statistical parsing
(preliminary) G (preliminary)
Lexicon experiment 1 Modeling of semantic
syntactic selection type

i

Lexicon experiment 2
semantic selection

i Integration of
Lexicon experiment 3 syntactic and semantic
linguistic parameters selection in parsers

Abbildung 4: Dependencies between parts of the work plan.

parser, and acquisition. The grammar phrase (the top row in the figure) consists
of constructing grammars for English and German with the aid of a quick-and-
dirty chunk parser, as well as the extraction of statistical parameters for English
from the UPenn Treebank. The parser phase (rows two and three) consists of
constructing statistical chunk parsers for English and German. In English, we
can use statistical parameters from the Treebank, but for German, we must first
implement the graph forward-backward algorithm, for want of a parsed training
corpus. In the acquisition phase (the bottommost three rows in the figure), we
use the parsers to construct models of syntactic and semantic selection, feed those
models back into the parsers, and tease apart the specifically linguistic from the
more broadly cognitive components of the selection models.

The phases will not proceed in a strict sequence; we expect to continually refine
all components of the complete system. Nonetheless, we do expect a concentration
of activity on each phase in turn. We intend the grammar phase to go quickly,
being the primary focus only for the first six months of the project. The aim is
not a complete grammar of English and German, but only an adequate grammar
for chunks and simplex clauses. The parser phase will take somewhat longer. Our
goal is to complete the parser phrase, and turn our full attention to the acquisition
phase, not later than the mid-point of the project period.
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3.6 Stellung innerhalb des Programms des Sonderfor-
schungsbereichs

The proposed project focuses, as do the other projects, on the syntax-semantics
interface—in our case, the interaction between projection (cf. project A3 (Reis))
and lexical semantics (cf. projects Al (Haider/Bierwisch), C3 (Kamp/Reyle)).
The unique contribution of our project is the bridge it provides between lingui-
stic foundations, particularly linguistically sophisticated lexical representations,
and an exciting and explosively growing segment of computational linguistics,
namely, work on statistical and corpus-based methods. The new statistical me-
thods have suddenly permitted us to handle unrestricted text, with particular
emphasis on acquisition and disambiguation, areas which remained stubbornly
recalcitrant to traditional methods. The shortcoming of the new methods is their
lack of linguistic depth, their missing linguistic foundations. We aim to synthe-
size the complementary strengths of sophisticated linguistic representations and
statistical acquisition and disambiguation methods. We propose to show how
linguistic representations of the kind developed in the lexical syntax/semantics
projects support parsing of realistically large-scale natural text. Complementa-
rily, we propose to show how the use of statistical methods supports exploratory
data-driven linguistic study, allows us to determine the validity and scope of
applicability of theoretical generalizations, and allows the results of the lexical
syntax/semantics projects to be extended to a very broad empirical range.

The in-breadth methodology is of particular relevance to the fragment projects
(B8, BY). The fragment projects also attempt to provide a sense of the big pic-
ture: the scope of the problem, and the interactions that arise among pieces. The
acquisition component of our project aims to ‘rough in’ a fragment over a broad
empirical domain. In a sense, the fragment projects aim for a consistent formali-
zation and vertical integration of the lexical representations with other aspects of
sentence grammar. We require coordination with the fragment projects, so as to
use and acquire representations that are consistent with theirs. We are customers
of the fragment projects in the sense that we intend to use their formalization of
lexical representations, and hope to build on their grammatical descriptions at
the chunk level. We also aim to provide the fragment projects with extensions of
their lexica to broad domains, and probabilistic disambiguation techniques based
on that lexical information.

The disambiguation component of our project aims to address a question of
great importance for practical implementation: how do we choose the humanly-
preferred analysis among the thousands of technically valid ones. Project C3
(Kamp/Reyle) attempts to limit the problem through the use of underspecified
representations, and project B3 (Rohrer) develops inferential techniques for re-
solving lexical ambiguities. We complement this work, by addressing syntactic
disambiguation as well as sense disambiguation, and by pursuing broad-coverage
techniques.
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The statistical disambiguation techniques we pursue also make a major contri-
bution to parser efficiency—efficiency is indeed a sine qua non of corpus parsing.
Probabilistic resolution of local ambiguities, our goal in the development of the
left-to-right parsers, greatly enhances efficiency by eliminating most search. Par-
ticularly given our emphasis on the integration of probabilistic models with the
linguistic representations of the syntax fragment project B8 (Hinrichs), we hope
that the probabilistic techniques we develop will complement and be integrable
with the techniques developed in project B4 (Hinrichs/Gerdemann) for efficient
parsing of the formalism used in the fragment.

Finally, the relationship that we establish between syntactic projection (spe-
cifically, s-projection) and prosodic phrases provides a strong connection with the
two projects that are concerned with the role of prosody in mediating between
syntax and semantics: projects A4 (Drubig) and C4 (Dogil). Given the hypothe-
sis that considerations from psycholinguistics, computational linguistics, prosody,
and syntax converge on a unitary phenomenon, work on the phonetics, phono-
logy, syntax and semantics of phrasing and related phenomena such as focus are
relevant to the problem of defining a linguistically motivated notion of chunk.
The provision of a robust parser for German is an additional link with project
C4. Previous work on automatic accent assighment has used noun phrase iden-
tification as an important source of information [38]. And the chunk parser we
propose to develop can be put to use in first-pass labeling of corpora with prosodic
phrases; editing automated labelings has proven in previous annotation projects
to be much more efficient than labeling from scratch.
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3.7 Erginzungsausstattung fiir das Teilprojekt
Es bedeuten:
PK: Personalbedarf und —kosten (Begriindung vgl. 3.71)
SV: Séachliche Verwaltungsausgaben (Begriindung vgl. 3.72)
I: Investitionen (Begriindung vgl. 3.73)
PK | Bewilligung 1994 1995 1996 1997
Vergii- An- | Vergii- An- Betrag | Vergii- An- Betrag | Vergii- An- Betrag
tungs- zahl | tungs- zahl | in DM | tungs- zahl | in DM | tungs- zahl | in DM
gruppe gruppe gruppe gruppe
104 105 105a 106 107 108 109 110 111 112 113
BAT IT a 2 187,2 | BAT IT a 2 187,2 | BAT IT a 2 187,2
zZusammen zusammen | 2 187,2 | zusammen | 2 187,2 | zusammen | 2 187,2
sV 1995 1996 1997
Bezeichnung Betrag | Bezeichnung Betrag | Bezeichnung Betrag
in DM in DM in DM
114 115 116 117 118 119
515 Geriéte Gerite Gerite
522 Verbrauchsmittel 5,0 | Verbrauchsmittel 5,0 | Verbrauchsmittel 5,0
527 Reisekosten 10,0 | Reisekosten 10,0 | Reisekosten 10,0
512 Biicher, Zeitschr. 2,0 | Biucher, Zeitschr. 2,0 | Biicher, Zeitschr. 2,0
531a Druck Druck Druck
531b Kopien 2,0 | Kopien 2,0 | Kopien 2,0
zZusammen 19,0 | zusammen 19,0 | zusammen 19,0
I 1995 1996 1997

Investitionen insgesamt DM

Investitionen insgesamt DM

Investitionen insgesamt DM

120

121

122

69,3
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3.71 Begriindung des Personalbedarfs einschliefllich
Teilprojektleiter
Name, akad. | engeres Fach | Bezeichnung Anteil der bera- | im derzeitige
Grad, des des Instituts aufgewende- | tend | SFB | Einstufung
Dienst- Mitarbeiters | der Hochschule | ten Gesamt- tatig | und bean-
stellung bzw. der Ein- zeit fiir das seit | tragte Ver-
richtung Teilprojekt glitungs-
auflerhalb der in Std./Wo. gruppe
Hochschule
123 124 125 129 130 131 132
Grundaus-
stattung
3.71.1
wissenschaft- | 1. Abney, Comp.-Ling. | SfS 10
liche Mitar- | Stephen, Dr.
beiter
(einschl. 2. Rooth, Comp.-Ling. | SfS 10
Hilfskrifte) Mats, Dr.
3.71.2
nichtwissen-
schaftliche
Mitarbeiter
Erginzungs-
ausstattung
3.71.3
wissenschaft- | 3. N.N. Comp.-Ling. 38.5 BAT Ila
liche Mitar-
beiter 4. N.N. Comp.-Ling. 38.5 BAT Ila
(einschl Statistik
Hilfskrafte)
3.71.4
nichtwissen-
schaftliche
Mitarbeiter
Responsibilities:

1. Project leader. Consultation in development of parsing and statistical algo-
rithms, syntactic representations, leadership of project.

2. Project leader. Consultation in development of parsing and statistical algo-
rithms, semantic representations, leadership of project.
3. Parsing algorithms, German chunk grammars, cognitive/linguistic models
of parsing and the lexicon.

4. Statistical models and parameter estimation, word bigrams models, seman-

tic type induction.
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We require two BAT TIla positions, one for a specialist in stochastic models
(4.) , and the second for a specialist in linguistic lexical representations and cogni-
tive language processing (3.). Such researchers currently come from very different
backgrounds. Specialists in stochastic models have backgrounds in computer sci-
ence and related fields (including, oddly enough, physics: the mathematics of
stochastic systems is the same whether the systems are physical or linguistic; we
know of several examples of physicists who have done work on stochastic lan-
guage models). Specialists in linguistic representations and cognitive processing
issues generally come from linguistic or psycholinguistic backgrounds. It would
be extremely difficult to find a single person with expertise in both fields.

3.72 Aufgliederung und Begriindung der Sichlichen
Verwaltungsausgaben (nach Haushaltsjahren)

1995 | 1996 | 1997

Mittel fiir Neuanschaffung von

Kleingeraten (515) sowie

Verbrauchsmaterial (522)

— Aus der Grundausstattung stehen
vorraussichtlich zur Verfiigung 6,5

—  Aus der Erginzungsausstattung
werden beantragt (vgl. Sp. 114-119) 5,0 5,0 5,0

Vorhandene Grundausstattung:

Two Macintosh 11X are available for the duration of the project, for use in
preparation of publications and slides.

Verbrauchsmittel (522):
EDV-Zubehér, Biiromaterial.

Reisekosten (527) Participation in scientific meetings. In 1995:
EACL
ACL

NEMLAP other conference/workshop dedicated non-traditional parsing me-
thodology

Biicher und Zeitschriften (512):

Project-relevant dissertations and workshop proceedings not found in available
libraries.

Kopien (531b):

Copies of circulated pre-publication papers relevant to the project.
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3.73 Investitionen

Bezeichnung des Gerétes beantragt fiir das
Haushaltsjahr
1995 | 1996 | 1997
136 137 138 139

2 SPARCstation 20/50
64 MB RAM, 1,5 GB HD | 69,3

Die Investitionen bestehen im Einzelnen aus:

Beschreibung Menge| Einzelpreis|  Summe
Sparcstation 20/50 20.505,10{41.010,20
AUI Adapter Kabel 147,60| 295,20
16 MB Memory expansion 1.809,50{ 7.238,00
Festplatte Fujitsu 1GB 1.650,00{ 3.300,00
S-Plus, single-user 3.990,00| 3.990,00
LDC Datenlizenz ) 3.000,00] 4.500,00
Summe[60.333,40

Mehrwertsteuer| 9.050,01

Gesamtsumme[69.383,41

O U O =
— = DO B b0 B

The workstations will be used for corpus experiments and stochastic modeling,
both of which are computationally intensive. S-Plus is statistical software, re-
quired for the stochastic models. The Linguistic Data Consortium (LDC) license
covers corpora, treebank data, and lexica necessary for the project. It is computed
at half the annual rate (1,5 rather than 3 years), the remainder to be covered from
other sources.
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