Reliability

Steven Abney

Universitat Tibingen

The usual approach to stochastic parsing is to ‘reverse’ a model of stochastic
generation. For example, a stochastic context-free grammar (SCFG) G defines a
stochastic process for generating sentences. A stochastic choice is made at each
derivation step, and the probability P (d) of the derivation is the joint probability
of the stochastic choices made. P (d;X), the probability of producing derivation
d and in the process derivingssentence X, is P (d) if d is in fact a derivation of
X, and 0 otherwise. P(x) is 4P (d;x). To parse a sentence X, we choose that
derivation d for which the conditional probability P (djx) of d given the sentence
X is at a maximum, where P (djx) is defined as P (d; X)=P (X).

However, there is reason to believe that no SCFG provides an acceptable
approximation of P (djx) for English. The basic problem is that SCFG’s with
reasonable coverage of English typically assign significant probability to many
parses for each sentence. As a result, even if an SCFG G is successful in the
sense that the most-likely parse according to G is almost always the correct
parse, the most-likely parse will nonetheless have a probability significantly less
than one. In fact, it is probably a safe bet that, for SCFG’s for English, the
average probability for the most-likely parse is a good deal less than 1=2.

Since the SCFG parsing method simply chooses the most-likely parse as the
correct parse, it might seem that only the relative likelihood of parses matters, not
their absolute likelihood. But absolute likelihood does matter, for the following
reason. If we care about which parse tree was used to generate a sentence (as we
obviously do if we are interested in parsing), then we must consider English as
a set of parse-trees, not terminal strings. P (d;X) is our model of the probability
of the speaker (writer) generating X with the parse-tree d. If the hearer (reader)
always chooses the parse-tree d that maximizes P (djx), it follows that the hearer
chooses a different parse-tree from the one the speaker intended with probability
1 j maxq P (djx). In a word, if pmax is the average probability of the most-likely
parse, the misparse rate predicted by the model is 1 j Pmax- If the probability
of the most-likely parse is only 1=2, we predict that people will misparse every
other sentence they hear!

Misparses are generally considered quite rare. Certainly if genuine ambiguities
were common, it would be impossible (or at least useless) to build treebanks in
which a unique parse is assigned to each sentence. Mitch Marcus reports (p.c.)
that in his experience in constructing the Penn Treebank, genuine ambiguities
have been virtually nonexistent. A rate of 1 in 100 seems an overestimate. But
even a rate of 1 in 10 would require a pmax of :90 on average, which is probably
unachievable with SCFG’s.

It may seem that the problem is just an issue of practicality: that SCFG’s with
appropriately low misparse rates do exist, even if we have not yet constructed
one. But I think that unlikely.



First, we can show that the parsing problem for English may be such that
no SCFG can solve it. To do so, we need some terminology. Define a structured
language as a (possibly infinite) set of parse-trees. A treebank like the Penn
Treebank (Marcus et al. 1993) is a sample of English as a structured language.
A structured language D defines a unique (unstructured) language L(D), being
the union of the yields of parse-trees in D. There is also a unique context-free
grammar G(D) implicit in D: rule X ¥ fiis in G(D) iff X is expanded to fi
in some parse-tree in D. Conversely, the structured language D(G) is the set of
all parse-trees generated by G. A stochastic structured language is a structured
language D and a probability distribution over D. For a stochastic structured
language, G(D) is an SCFG, where X ¥ fi is in G(D) iff X is expanded to fi
in some parse-tree in D, and the probability of X ¥ fi is the relative frequency
of expanding X to fi in parse-trees of D, among all possible expansions of X in
parse-trees of D. Conversely, D(G) is the stochastic structured language that
contains a parse-tree d with probability P (d) iff G generates d with probability
P (d).

In these terms, what we can show is that structured languages D exist such
that no context-free grammar generates D, and a fortiori, stochastic structured
languages D exist such that no SCFG generates D.

Proof. Consider a structured language D. If any CFG generates D, it must
be G(D): any CFG G' that contains non-useless rules not in G(D) ipso facto
generates parse-trees not in D, and any CFG G’ that omits rules in G(D) ipso
facto fails to generate some parse-trees in D. Now consider the structured lan-
guage Dy = f[sa]; [salsal]g with G(Dy) =S ¥ aSja. D(G(Dy)) 6 Dy; hence no
CFG generates Dy. QED.

(Note that the string language of Dy is generated by a CFG, but not Dy.
Note also that Dy is the homomorphic image of the structured language of a
CFG, e.g. S ¥ ajaA;A T a. But Dy itself is not generated by a CFG.)

Let us consider a more interesting example. Lexical analyzers for compilers
typically consist of a set of regular-expression definitions, one for each category
of token. A ‘parse’ for a sentence is a partitioning of the sentence into tokens.
In general, there are many legal partitionings for a sentence, given a regular-
expression grammar for tokens. The usual rule for choosing among them (e.g.,
Lesk & Schmidt 1979, Aho & Ullman 1972) is the longest-match rule: at the start
position, choose the regular-expression match that covers the most of the input;
then repeat, taking the end position of that match as the new start position.

For recursive grammars, the obvious analogue to the longest-match rule is
‘close the current phrase as late as possible’—i.e., precisely the low attachment
or late closure parsing preference (Kimball 1973, Frazier 1979, Shieber 1983),
which accounts for the garden path status of examples like:

The emergency crews really hate is domestic violence
While Mary was mending the sock fell off her lap (Frazier 1978)
I need one pound bag of sugar (Marcus 1980)

To evaluate the role that the longest-match rule plays in more pedestrian



sentences, I performed an experiment. I wrote a program to convert Penn Tree-
bank trees into chunks—the non-recursive ‘cores’ of major phrases (Abney 1991).
Based on a small sample, I wrote a regular-expression grammar to describe the
chunks. I wanted to determine if applying the longest-match rule to the chunk
grammar effectively discriminates correct matches (those that correspond to Tree-
bank chunks) from incorrect matches. A match was considered a longest match
if it was not a proper substring of some other match. On a test sample, longest
matches corresponded to Treebank chunks 82% of the time. The largest source
of error was lack of coverage of my grammar—if the true chunk was not covered
by the grammar, the largest fragments of it that were covered by the grammar
ended up as longest matches. If we eliminate such cases, in order to evaluate the
effectiveness of the longest-match preference per se, longest matches are correct
95% of the time.

The longest-match rule cannot be captured by an SCFG, in general. Consider
the regular grammar G; =

The language generated is a4+, and the grammar is highly ambiguous. However,
the longest-match rule specifies a unique correct parse for each sentence, in which
every A is expanded to aa, except the last A in an odd-length sentence. It is easy
to define a process with P (djx) = 1 if d is correct, and P (djx) = 0 otherwise.
But there is no way to assign probabilities to the expansions in G so as to create
an SCFG with P (dpestjX) = 1. Consider the sentence aaa, with correct parse
d; = [s[aaa][s[ad]]]. To have P(d;jaaa) = 1, we must have P (d;) > 0. Since all
rules in G are used in di, every rule must have probability > 0. As a consequence,
all wrong parses for aaa must also have probability > 0; ergo P (d;jaaa) must be
less than one.

It should not be surprising that SCFG’s have difficulty capturing the longest-
match rule. The notion of longest match is cross-derivational, which is to say,
context-sensitive. We cannot determine whether a noun phrase like “the emer-
gency” is a longest match by examining its internal structure; it is a longest
match only if there is no alternative (partial) parse with a longer NP, and that
depends on how the sentence goes on after “the emergency”.

This suggests that we at least make probabilities of expansions context-
sensitive. But expressing the longest-match preference is still difficult if our
model is essentially a model of generation. Instead of considering the probability
of expanding a category X to fi, let us consider the probability of being right
if we reduce fi to X. That is, we interpret rule X ¥ fi as a pattern that says
sequence fi can be reduced to X. The reliability of the pattern is the probability
that a sequence fi in fact reduces to a phrase X in the speaker’s intended parse
for the sentence. Reliability can be easily estimated from a treebank by counting.
A tree of category X is correct if all its subtrees are correct, and if the pattern
X ¥ fi that licenses the tree is correct. Hence the reliability R(d) of a (partial)



parse-tree d is the product of the reliabilities of its children times the reliability
of the pattern licensing d.

Patterns can be refined by conditionalizing their reliability on further prop-
erties of the children and the context; e.g., by splitting instances of pattern
fi into longest matches vs. non-longest matches. For example, in the exper-
iment reported above, only 31% of matches are correct. However, splitting
into longest match and non-longest match improves discrimination: 98% of non-
longest matches are wrong, and 82% of longest matches are right (not adjusting
for coverage errors).

It is worth noting the relation between the model sketched here and tree
automata. A tree automaton (Sakakibara 1992) walks a tree bottom-up. Its state
at each node is a function of the category of the nodes and the automaton’s state
at each of the child nodes. The tree is accepted iff the automaton is in a final state
at the root node. In the model I have sketched, there are two states: an accepting
state and a rejecting state. I have also generalized tree automata by making the
transition function context-sensitive and stochastic. Instead of specifying a single
next state, the transition function provides a probability distribution over next
states.

Finally, whether the pattern-reliability model turns out empirically to be su-
perior to parsing-by-generation models (including context-sensitive variants such
as that being explored at IBM: Black et al. 1993), a decided advantage of the
pattern-reliability model is that it provides us with a framework for approaching
the question of what cues enable people to parse (apparently) nearly determinis-
tically in a single left-to-right pass. If we can find reliable patterns for recognizing
phrases based on at most limited right context, we will have a candidate expla-
nation not only for the fact of human parsing, but also its time course.

References

Steven Abney (1991). Parsing by Chunks. In: Berwick, Abney, & Tenny (eds.),
Principle-Based Parsing. Kluwer.

Al Aho & Jeffrey Ullman (1972). The Theory of Parsing, Translation, and Com-
piling. Prentice-Hall, Englewood Cliffs, NJ.

Ezra Black, Fred Jelinek, John Lafferty, David M. Magerman, Robert Mercer, &
Salim Roukos (1993). Towards History-Based Grammars: Using Richer Models
for Probabilistic Parsing. Proc. ACL, 31-37.

Lyn Frazier (1978). On Comprehending Sentences: Syntactic Parsing Strategies.
Doctoral dissertation, University of Connecticut.

John Kimball (1973). Seven principles of surface structure parsing in natural
language. Cognition 2, 15-47.

Michael Lesk and E. Schmidt (1979). LEX—lexical analyzer generator. In UNIX
Programmer’s Manual, University of California, Berkeley.

Mitchell P. Marcus (1980). A Theory of Syntactic Recognition for Natural Lan-
guage. MIT Press, Cambridge, MA.



Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz (1993).
Building a Large Annotated Corpus of English: The Penn Treebank. Computa-
tional Linguistics 19.2, 313-330.

Stuart Shieber (1983). Sentence disambiguation by a shift-reduce parsing tech-
nique. [JCAI-83, 699-703.

Yasubumi Sakakibara (1992). Efficient Learning of Context-Free Grammars from
Positive Structural Examples. Information and Computation 97, 23-60.



