
Memory Requirements and Local Ambiguities
of Parsing Strategies

Introduction

Memory requirements and local ambiguities are two considerations that have played an

important role in shaping the parsers adopted in the psycholinguistic and computational linguistic

literatures. To the best of our knowledge, however, memory requirements and local ambiguities

of psycholinguistically interesting classes of parsing strategies have never been explicitly

defined, much less rigorously explored. This paper is an initial attempt to remedy the situation.

It is widely assumed that the human parser operates under the strictest constraints on space

resources. For example, the classical explanation for the uninterpretability of center-embedded

examples is stack overflow: parsing a sentence like the rat the cat the dog chased bit ate the

cheese is difficult because it requires holding on to too many incomplete substructures (Chomsky

& Miller 1963). Since that example involves a maximum of only three or four incomplete

constituents, the stack-overflow explanation entails limits on space resources that are Draconian

indeed. Even if we assume that additional factors are involved in center embedding, there are

well-established limits on short-term memory that are often taken to imply corresponding limits

on the space available to the parser. It seems safe to assume that a very small constant number of

short-term memory units are available, where one memory unit is sufficient space for one parse-

tree node.

Steven P. Abney

Bell Communications
Research

Mark Johnson

Brown University

Abney & Johnson Parsing Strategies

2

A property of parsers that interacts with their space requirements is the number of local

ambiguities they face for a given grammar. If we change our parsing strategy so as to reduce the

amount of space required, we often increase the number of local ambiguities the parser faces.

An increase in local ambiguities generally has undesirable consequences. Depending on how we

deal with them, additional local ambiguities may increase error rate, or they may increase overall

time and space usage, because of the overhead required for backtracking or pursuing alternative

parses in parallel.

People often speak of local ambiguities as if they were intrinsic to the grammar of the

language being parsed. For example, the Marcus parser (Marcus 1980) is said to exploit a “wait-

and-see” strategy, in that when it encounters a local ambiguity, it delays making a decision in

hopes of finding disambiguating information. However, local ambiguities are actually

determined by the parser, not the grammar. They consist in the points at which a given parser

cannot choose with certainty among multiple legal next actions leading to different parses. The

local ambiguities the Marcus parser avoids are only local ambiguities relative to some other

parsing algorithm which we take as an implicit standard. It would be equally fair to say that the

other parsing algorithm pursues an “overly eager” strategy, and perceives local ambiguities

where there are none in fact (taking the Marcus parser as standard).

These two properties of parsing strategies – space requirements and local ambiguities – have

played an important role in shaping the parsing algorithms adopted in the literature. For

example, Frazier (1978) emphasizes the necessity of minimizing space requirements, hence she

adopts a basically top-down parsing strategy in which the parser never has to keep track of more

than one parse-tree fragment. On the other hand, Marcus (1980) emphasizes the need to avoid

local ambiguities, and therefore adopts a parsing strategy that is closer to bottom-up, and

imposes less stringent constraints on space usage.

Nonetheless, these properties have not received careful examination, and assumptions

sometimes made about them strike us as unrealistic. For example, Frazier assumes that a node

Abney & Johnson Parsing Strategies

3

only takes up space in short-term memory until it has been attached to some parent node – hence

the parser attaches a node immediately, in the first position that suggests itself, in order to keep

the load on short-term memory at a minimum. In other words, the parser’s (short-term) space

requirements are determined by the number of nodes without a parent. We consider it more

realistic to include all nodes that the parser may need to refer to later in the parse, i.e., all nodes

whose parent has not been identified, and all nodes that are missing one or more children. Of

course, if we permit parse-tree nodes to be shuffled between short-term and long-term memory,

short-term memory load cannot be equated with the parser’s (undifferentiated) space

requirements. We will concern ourselves only with undifferentiated space requirements.

We adopt the postulate, common to much (though by no means all) psycholinguistic research,

that the human parser constructs a syntactic parse tree of the utterances it processes, and that it

does so in an incremental, node-by-node and arc-by-arc fashion. We do not require that the

parse tree exist in its entirety at any point – in fact, we assume that individual nodes are

“garbage-collected” as soon as they are no longer needed, generally well before the end of the

sentence has been reached. We also do not wish to make strong claims about how the human

parser is implemented in the brain. We only require that speaking as if the human parser builds

parse trees permits us to characterize accurately its space requirements and local ambiguities.

Even this qualified assumption could be incorrect: as Stabler (1990) points out, semantic

interpretation does not necessarily require the construction of a syntactic tree. Nevertheless

many psycholinguistic models do assume that such trees are built “on-line”, so it is interesting to

study the general computational properties of algorithms for parse tree construction.

In this paper, we explore the range of possible parsers, their memory requirements, and the

number of local ambiguities they face. We characterize parsers according to the parsing

strategies they implement, where by parsing strategy we mean a way of enumerating the nodes

and arcs of parse trees. For example, a top-down parser implements a top-down parsing strategy,

in which each node is enumerated before any of its descendants. In a bottom-up parsing strategy,

Abney & Johnson Parsing Strategies

4

each node is enumerated after all its descendants. Many other parsing strategies are possible;

indeed, any way of ordering the nodes of parse trees, even if it is not finitely specifiable, is a

parsing strategy.

We see this paper as laying the groundwork for an attack on the question, “For any given

grammar, what parsing strategy has the optimal combination of space requirements and local

ambiguities, and how can we implement that parsing strategy?” We do not attempt to answer

that question here. But we do provide tools for evaluating the space requirements and local

ambiguities of a given parsing strategy for a given grammar.

We also show that whatever the optimal parsing strategy for English, it is probably neither

top-down nor bottom-up. Namely, if we ascribe the unacceptability of center-embedded

structures to space limitations, then our parsing strategy must have the property that center-

embedded structures require more space than either uniformly left- or right-embedded structures.

This is not a property of either top-down or bottom-up parsing strategies.

Parsing Strategies

A parsing strategy is a way of enumerating the nodes and arcs of parse trees. Precisely, it is a

function from parse-trees to enumerations of their nodes and arcs.

We will only be interested in certain classes of parsing strategies. In particular, we assume

that nodes are not attached to one another until both of them exist, i.e., that an arc is enumerated

after the two nodes it connects. Further, we assume that terminal nodes are enumerated exactly

when the words they correspond to are read from the input stream. That is, if terminal node n1

precedes terminal node n2 (if n1 is read from the input before n2), then n1 is enumerated before

n2.

We do not require preceding non-terminal nodes to be enumerated before succeeding non-

terminals, but if they are, we say that the parsing strategy is left-to-right. If a strategy is left-to-

Abney & Johnson Parsing Strategies

5

right, then in a structure like the following, no node under Z (including Z) is enumerated until all

the nodes under Y (including Y) have been enumerated.

Two well-known classes of parsing strategies are top-down and bottom-up strategies. In top-

down parsing strategies, a node is enumerated before any of its descendants, and in bottom-up

strategies, a node is enumerated after all its descendants. Top-down strategies vary with respect

to the order in which nodes unrelated by dominance are enumerated, and with respect to the

order in which arcs are enumerated. Left-to-right top-down strategies vary only with respect to

the order in which arcs are enumerated. That is, the combination of left-to-right and top-down

constraints is sufficient to determine a unique ordering on the nodes of a parse-tree. (Likewise

for left-to-right bottom-up strategies.)

To illustrate, consider the grammar G1:

S → NP VP

NP → Det N

VP → V NP

Abney & Johnson Parsing Strategies

6

L(G1) is the single sentence s = Det N V Det N. A left-to-right top-down node-enumeration

strategy enumerates the parse-tree of s as follows (adopting a fairly standard ordering for the

arcs)1:

The left-to-right bottom-up strategy enumerates the parse tree of s as follows:

These two strategies delimit the end-points in a family of strategies we call syntax-directed

parsing strategies, adapting a term from Nijholt (1980). A syntax-directed parsing strategy can

be characterized by placing an “announce point” in every grammar rule, such that the children

that precede the announce point (and all their descendants) are enumerated first, then the parent

node is enumerated, and then the children after the announce point are enumerated (and all their

descendants). More precisely, consider an arbitrary node with label X and with children labelled

Y1 ... Ynr
, corresponding to the grammar rule r = X → Y1 ... Ynr

:

Abney & Johnson Parsing Strategies

7

In a syntax-directed node-enumeration strategy, there is a unique announce point ir in each rule

r, such that node X is enumerated after children Y1 ... Yir and all their descendants, but before

Yir+1 ... Ynr
 and all their descendants. In the preceding diagram, the nodes in the shaded region

are enumerated first, then X, and then the descendants of X in the unshaded region. Note that a

corollary of this definition is the following. For each node y, at the point that y’s parent is

enumerated, either all of the subtree rooted at y (including y itself) has been enumerated (this is

the case for Y1 ... Yir), or none of the subtree rooted at n has been enumerated (this is the case for

Yir+1 ... Ynr).

Every syntax-directed strategy is left-to-right. Conversely, the left-to-right top-down and

bottom-up strategies are both syntax-directed. In the top-down strategy, ir = 0 for all rules r: a

node is enumerated before any of its children or their descendants. In the bottom-up strategy, ir

= nr for all rules r: a node is enumerated after all its children, and all their descendants. An

important, but less well-known strategy is the left corner strategy, in which a node is built

immediately after its first child and that child’s descendants, but before the remaining children or

any of their descendants, as illustrated in (1):

Abney & Johnson Parsing Strategies

8

(1)

In the left corner strategy, ir = min(1, nr) for all rules r.

Top-down, bottom-up, and left-corner parsing strategies also happen to be examples of

uniform syntax-directed strategies. A uniform syntax-directed strategy is one in which the

announce point is the same in every rule. More precisely, a uniform syntax-directed strategy is

one in which there is some j, fixed for the strategy, such that either ir = min(j, nr) for all rules r

(all announce points are at the same point, counting from left to right), or else ir = max(j, 0) for

all rules r (all announce points are at the same point, counting from right to left).

Syntax-directed parsing strategies correspond systematically to the generalized left corner

(GLC) parsers (Demers 1977), a family that includes some of the most important parsers in the

computer science literature. Syntax-directed strategies are especially well suited for

implementation by pushdown automata, using a construction modelled closely after that of

Demers.

By contrast, strategies of linguistic interest are sometimes not syntax-directed. For example, a

strategy that is popular in Government-Binding circles is head-driven parsing, a left-to-right

strategy in which each non-terminal node has a head, and is enumerated immediately after its

head. The following is a typical enumerated parse tree (ignoring arcs for simplicity’s sake):

Abney & Johnson Parsing Strategies

9

The shaded region marks the nodes that have been enumerated at the point just before the parent

of I-bar is enumerated. Note that some of the subtree rooted at I-bar has been enumerated, but

not all of it. Therefore, head-driven parsing is not syntax-directed.

Finally, there are two types of arc enumeration we will be concerned with. A parsing strategy

is arc-eager when an arc is enumerated at the earliest point that the two nodes it connects have

been enumerated. If two arcs become candidates for enumeration simultaneously, they are

enumerated from left to right and bottom to top. A parsing strategy is arc-standard when an arc

is enumerated at the earliest point such that (1) both nodes it connects have been enumerated,

and (2) either none or all of the subtree under the child node has been enumerated. (Again, arcs

that are not uniquely ordered by these constraints are enumerated left to right and bottom to top.)

In slightly different words: under an arc-eager strategy, a node n is attached as soon as possible,

i.e., as soon as both it and its parent have been created. Under an arc-standard strategy, n is

attached as soon as possible, with the exception that, if any of n’s descendants already exist when

n is created, n’s attachment is postponed until all of n’s descendants have been created and

attached.

With a top-down or bottom-up node enumeration, eager and standard arc enumerations are

equivalent. However, they diverge when the node enumeration is e.g. left corner. The following

illustrates an arc-standard left corner strategy ((1) above illustrates the corresponding arc-eager

enumeration):

Abney & Johnson Parsing Strategies

10

As we shall see in the next section, an arc-eager strategy may require less space than the

corresponding arc-standard strategy, but never more. Since we are interested in minimal space

requirements, we have used eager arc enumeration by default throughout the paper; standard arc

enumerations appear only where explicitly noted.

Space Requirements

Now let us consider the space requirements of parsing strategies. The minimum space we

need is one unit for each node that we may yet need to refer to. The nodes that we may yet need

to refer to are those that are incomplete in the sense that either their parent, or some child, has not

yet been constructed. Given an enumeration x0 ... xn of the nodes of a parse-tree, it is

straightforward to calculate memory requirements. For each point i in the enumeration, 0 ≤ i ≤ n,

the incomplete nodes are those nodes y such that y has already been built (i.e., y = xj, j ≤ i), and

either the parent or one of the children of y has not yet been built (i.e., for some k > i, xk is either

the parent or a child of y). The memory usage of the parse-tree enumeration x0 ... xn is the

maximum number of incomplete nodes at any point i. The space required by a parsing strategy

S, given a grammar G, is the maximum space required by any enumeration that S assigns to a

parse-tree of G. This constitutes a lower bound on the space used by any parser that implements

the strategy S. A parser that implements S cannot use less space than S requires, though it may

use more.

Abney & Johnson Parsing Strategies

11

To make the discussion more concrete, let us consider again the left-to-right, bottom-up, arc-

eager enumeration of the parse-tree of G1 (repeated below). There are 17 nodes and arcs. The

memory requirements f(i) at each point i in the enumeration are as shown.

The maximum comes at point 9, where there are five incomplete nodes, as illustrated in the

following snapshot. The nodes and arcs that have been enumerated at point 9 are those in the

outlined region; both NPs, V, Det, and N are all incomplete.

Using a top-down enumeration, by contrast, the maximum space required is three, at points 4

(dotted lines) and 6 (solid lines):

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

f(i) 1 2 3 2 1 2 3 4 5 4 3 4 3 2 3 2 0

Abney & Johnson Parsing Strategies

12

In heavily right-branching languages, like English, a top-down strategy is far more space-

efficient than a bottom-up strategy. Consider grammar G2 =

S → NP VP

VP → V NP

 | V S

and a sentence NP V NP ... V NP. Under the bottom-up strategy, no nonterminal nodes are

constructed until the entire sentence has been read. For example, the following is a snapshot of

the parse of NP V NP V NP, just after reading the final NP (ignoring arcs). All enumerated

nodes are incomplete.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

f(i) 1 2 2 3 2 3 1 2 1 2 1 2 1 2 1 2 0

Abney & Johnson Parsing Strategies

13

Hence space requirements are unbounded, inasmuch as no bound is placed on the length of the

sentence. Under a top-down strategy, on the other hand, there are never more than two

incomplete nodes at any point in the parse. For grammar G2, the difference in space

requirements for top-down and bottom-up strategies literally could not be greater.

We should emphasize here the importance of the difference between bounded and unbounded

space. If the space requirements of a strategy are bounded, then the strategy is potentially

implementable by a finite machine. If a strategy’s space requirements are unbounded, then no

finite machine can truly implement it. No matter how much space a machine has at its disposal,

it will fail to parse some grammatical inputs (in fact, infinitely many), simply because it runs out

of working memory.

Turning now to left-branching structures, we observe that bottom-up parsing is more space-

efficient. Suppose we add the following rules to our grammar:

NP → AP N

AP → AdvP A

AdvP → Adv

Parsing the sentence Adv A N V, the top-down strategy requires five units of memory. Just after

reading Adv, we have the following structure, where the outlined nodes and arcs are those that

have been enumerated. All outlined nodes are incomplete.

Abney & Johnson Parsing Strategies

14

A bottom-up strategy requires only three memory units, which is the minimum for a bottom-up

strategy on any non-trivial tree.

If the depth of left embedding is unbounded - e.g., if we add the rule NP → NP ’s N to our

grammar – then a top-down strategy requires unbounded space. On sentences of form N ’s N ...

’s N V, the entire left branch from the root to the first N is enumerated before the N is

enumerated. Since that branch consists of incomplete nodes, and there is no bound on its size,

memory requirements are unbounded. (Not to mention the compounding problem that the

structure is also locally infinitely ambiguous.)

Before going on to a discussion of center embedding, let us add a brief note about the effect of

choice of arc-enumeration strategy on space requirements. Under an arc-eager strategy, a given

arc may be enumerated earlier than under the corresponding arc-standard strategy, but never

later. Enumerating an arc earlier may cause a node to become complete, thus decreasing space

requirements, but it can never add to the number of incomplete nodes. Hence arc-eager

strategies sometimes require less space than arc-standard strategies, but never more.

Abney & Johnson Parsing Strategies

15

Center Embedding

If we wish to explain the unparsability of center embedded constructions by appealing to

memory limitations, then a property we desire of our parsing strategy is that its memory

requirements be maximal on center-embedded constructions, not on left- or right-branching

constructions. Given the popularity of both top-down and bottom-up strategies, then, it is

perhaps surprising that neither of them have the desired property.

For the sake of simplicity, we consider only grammars that generate binary branching trees. A

uniform left-branching structure involves recursive expansion of the left branch, right-branching

involves expansion of the right branch, and uniform center-embedding involves alternating

expansion of left and right branches:

For binary-branching trees, there are three possible uniform syntax-directed, arc-eager parsing

strategies: top-down, bottom-up, and left-corner.

The bottom-up strategy requires three units of space on uniformly left-branching trees,

regardless of the size of the tree. On uniformly right-branching trees, the bottom-up strategy

requires n+1 units of space, for n the number of terminal nodes. On uniformly center-embedded

trees, the bottom-up strategy has maximum memory requirements just after building the first

non-terminal node (incomplete nodes circled):

Abney & Johnson Parsing Strategies

16

At that point, we require m+2 memory units, for m the number of terminal nodes on a left

branch. If the topmost expansion is a left-branch expansion (as here), m = n/2, else m = n/2,

for n the total number of terminal nodes. In short, the bottom-up strategy requires unbounded

space on both center-embedding and right-branching structures. For sentences of a fixed length,

the bottom-up strategy requires twice as much space for right-branching constructions as for

center-embedded constructions. Hence the bottom-up strategy predicts (incorrectly) that right-

branching structures should be at least as demanding as center-embedded constructions, with

respect to space requirements, and even more demanding, if we take constant factors into

account.

With a top-down strategy, uniformly left-branching trees require n units of space, for n the

number of terminal nodes. Right-branching trees require constant space of 2 units. Center-

embedded trees require maximum space at the point immediately after the last terminal on a left

branch has been enumerated (dark circles are completed nodes, open circles are enumerated but

incomplete nodes):

Abney & Johnson Parsing Strategies

17

The top-down strategy requires m+1 units of space, for m the number of terminals on a right

branch. If the topmost expansion is on a right branch (as here), m = n/2, else m = n/2, for n

the total number of terminal nodes. The top-down strategy requires unbounded space on both

left- and center-embedded constructions; and for sentences of fixed length, it requires twice as

much space for left-embedded constructions as for center-embedded constructions. Like the

bottom-up strategy, the top-down strategy fails to predict that center-embedding imposes the

greatest load on memory.

The final alternative is the left-corner strategy. On left-branching structures, the left-corner

strategy requires a constant 2 units of space. On right-branching structures, it requires a constant

3 units of space.2 The following snapshots illustrate. (In the right-branching construction, the

center incomplete node has just been enumerated, and neither of the arcs connecting it to its

parent and child have been enumerated.)

In a center-embedded construction, the left-corner strategy requires m+1 units of space, for m the

number of terminals on a left branch:

Abney & Johnson Parsing Strategies

18

If the topmost recursion is through the left branch, m = n/2, else m = n/2, for n the total

number of terminal nodes. In either case, unbounded space is required for center-embedded

constructions. Unlike top-down and bottom-up strategies, the left-corner strategy does correctly

predict that center-embedded constructions require more space than either left- or right-

branching constructions.

Local Ambiguities

An important additional factor that impinges on our choice of parsing strategy is the presence

of local ambiguities. We have been speaking to now as if we knew in advance what the parse-

tree is, but of course, in general, more than one parse-tree will be consistent with the input seen

so far at any point in the parse. Local ambiguities require that we either guess and accept a

certain error rate, or simulate a non-deterministic computation, with concomitant increase in

space resources for keeping track of multiple possible parser states. In either case, the cost of

local ambiguities can be very high, and they are generally to be avoided.

We can determine where local ambiguities arise, given a particular parsing strategy. The

nodes and arcs that must be constructed after reading word wi and before reading wi+1 are those

nodes and arcs that are enumerated between the terminal nodes corresponding to wi and wi+1.

We call the set of such nodes and arcs the ith parse increment. Local ambiguities arise where the

parser is unsure which set of nodes and arcs to build: that is, at those points in the input where

there is more than one parse increment consistent with the input seen so far and the next k words

of lookahead.

For example, consider the grammar G3 =

S → Adv NP VP

NP → NP ’s N

Abney & Johnson Parsing Strategies

19

NP → Det N

with a top-down parsing strategy, and k = 1. At the beginning of a sentence beginning “suddenly

the man ...,” lookahead tells us that the first category is Adv. We consider all parse trees

generated by G3 whose frontier begins with Adv; they are indicated in (2) below. The first parse

increment of any given parse tree is the set of nodes and arcs enumerated before the first word;

the first parse increments are outlined in solid lines. The first parse increments are all identical,

so there is no local ambiguity at position 0 in the input.

After reading the first word from the input, we know that the first two categories in the

frontier of the correct parse tree are Adv Det (one word read, one word of lookahead). We

consider all parse trees of G3 consistent with this input; this is the same set of parse trees as was

consistent with input Adv, illustrated in (2). The second parse increment of any one parse tree

consists of the nodes and arcs enumerated before the second word, but not before the first word.

The second parse increments are outlined in dotted lines in (2). There are differences among the

second parse increments, hence there is a local ambiguity just before the second word.

Intuitively, using a top-down node enumeration and one word of lookahead, the parser does not

know how many NP’s to build.

(2)

Abney & Johnson Parsing Strategies

20

With a bottom-up strategy, by contrast, there is no local ambiguity before either the first or

second word. The first parse increment is the empty set (no nodes or arcs are enumerated before

Adv), and the second parse increment consists of the sole node Adv:

Also with a left-corner strategy, there is no local ambiguity at either point. The first parse

increment is the empty set, and the second parse increment consists of Adv, S, and the arc

connecting them.

A strategy is more eager (or less circumspect) with respect to node enumeration if it builds

non-terminal nodes at earlier points in the input string. Thus top-down strategies are more eager

than left corner strategies, which are in turn more eager than bottom-up strategies. Choosing a

less eager strategy sometimes reduces the number of local ambiguities the parser faces, as the

previous example demonstrates. However, we saw earlier that choosing a strategy that is too

circumspect – for example, moving from a left corner strategy to a bottom-up strategy – can

increase space requirements. For grammar G3, bottom-up and left-corner strategies appear to be

equally well suited, requiring only constant space, and presenting no local ambiguities. If we

added a right-recursive rule, such as VP → V S, the bottom-up strategy would require

unbounded space, so the left-corner strategy would appear to be represent the optimal

combination of space requirements and local ambiguities. Whether the left-corner strategy is an

optimal strategy for all grammars, we must leave as a question for future research.

Differences in arc-enumeration order can also affect local ambiguities, even if we hold the

node-enumeration order constant. Consider the grammar

Abney & Johnson Parsing Strategies

21

S → a A | a B

A → B c

B → b b

Let the parsing strategy be left-corner, arc-eager, and k = 1. Then after seeing input ab, with

lookahead b, there are two possible parse-trees. The outlined subtrees represent the union of the

first, second, and third parse increments:

The alternative parse-trees agree about which nodes should be constructed, but disagree as to

whether B is a child of S or not. On the other hand, if the strategy is left-corner, arc-standard,

then there is no local ambiguity. The arc between S and B is not enumerated until after the

subtree under B is complete, so the parse increments up to the second b are identical:

We saw earlier that an arc-eager strategy may require less space than an arc-standard strategy,

but never more. Here we see that the cost of diminished space requirements is sometimes an

increase in local ambiguities.

Abney & Johnson Parsing Strategies

22

Conclusion

In motivating hypotheses about the human parser, researchers have sometimes appealed to the

need to minimize space requirements and local ambiguities. We feel that such arguments have

been unpersuasive hitherto, for want of suitable means for evaluating a parser’s space

requirements and local ambiguities. We have shown how to evaluate the minimum space

requirements of, and local ambiguities faced by, any parser that can be characterized as

constructing phrase-structure trees. We have used these measures to obtain a surprising result.

Namely, if human difficulty in processing center-embedded constructions is to be attributed to

memory limitations, then the human parser must employ a strategy that has greater space

requirements for center-embedded constructions than for left- or right-branching constructions.

Neither top-down nor bottom-up strategies have that property. We hope that these techniques

will prove generally useful in evaluating models of the human parser.

Abney & Johnson Parsing Strategies

23

References

Chomsky, N., & G. Miller (1963) “Finitary Models of Language Users,” chapter 13 of R. Luce et

al., eds., Handbook of Mathematical Psychology (vol II), John Wiley and Sons, New York.

Demers, A. (1977) “Generalized Left Corner Parsing,” Conference Record of the Fourth ACM

Symposium on Principles of Programming Languages, 1977 ACM SIGACT/SIGPLAN,

pp. 170-182.

Frazier, L. (1978) On Comprehending Sentences: Syntactic Parsing Strategies, unpublished PhD

dissertation, University of Connecticut.

Marcus, M. (1980) A Theory of Syntactic Recognition for Natural Language, The MIT Press,

Cambridge, Massachusetts.

Nijholt, A. (1980) Context-Free Grammars: Covers, Normal Forms, and Parsing, Springer-

Verlag, New York.

Stabler, E. (1990) “Avoid the pedestrian’s paradox,” in C. Tenny, ed., The MIT Parsing Volume,

1988-1989, Center for Cognitive Science, MIT, Cambridge, Massachusetts, pp. 83-100.

Abney & Johnson Parsing Strategies

24

Footnotes

1 In terminology we introduce below, the illustrated strategy can be characterized as either

arc-eager or arc-standard; they are equivalent when node enumeration is top-down (or bottom-

up) and left-to-right.

2 Crucially, we assume eager arc enumeration. With standard arc enumeration, the left-to-

right left-corner strategy requires unbounded space on right-branching constructions.

1In terminology we introduce below, the illustrated strategy can be characterized as either arc-eager or arc-

standard; they are equivalent when node enumeration is top-down (or bottom-up) and left-to-right.

2Crucially, we assume eager arc enumeration. With standard arc enumeration, the left-to-right left-corner

strategy requires unbounded space on right-branching constructions.

	Introduction
	Parsing Strategies
	Space Requirements
	Center Embedding
	Local Ambiguities
	Conclusion
	References

