
Understanding the Yarowsky
Algorithm

Steven Abney
University of Michigan

Many problems in computational linguistics are well suited for bootstrapping (semi-supervised
learning) techniques. The Yarowsky algorithm is a well-known bootstrapping algorithm,
but it is not mathematically well understood. This paper analyzes it as optimizing an
objective function. More specifically, a number of variants of the Yarowsky algorithm
(though not the original algorithm itself) are shown to optimize either likelihood or a
closely related objective function K.

1. Introduction

Bootstrapping, or semi-supervised learning, has become an important topic in computa-
tional linguistics. For many language-processing tasks, there is an abundance of unlabeled
data, but labeled data is lacking and too expensive to create in large quantities, making
bootstrapping techniques desirable.

The Yarowsky algorithm (Yarowsky, 1995) was one of the first bootstrapping algo-
rithms to become widely known in computational linguistics. The Yarowsky algorithm,
in brief, consists of two loops. The “inner loop” or base learner is a supervised learning
algorithm. Specifically, Yarowsky uses a simple decision list learner that considers rules
of the form, “If instance x contains feature f , then predict label j,” and selects those
rules whose precision on the training data is highest.

The “outer loop” is given a seed set of rules to start with. In each iteration, it uses
the current set of rules to assign labels to unlabeled data. It selects those instances on
which the base learner’s predictions are most confident, and constructs a labeled training
set from them. It then calls the inner loop to construct a new classifier (that is, a new
set of rules), and the cycle repeats.

An alternative algorithm, co-training (Blum and Mitchell, 1998), has subsequently
become more popular, perhaps in part because it has proven amenable to theoretical
analysis (Dasgupta, Littman, and McAllester, 2001), in contrast to the Yarowsky algo-
rithm, which is as yet mathematically poorly understood. The current paper aims to
rectify that lack, increasing the attractiveness of the Yarowsky algorithm as an alter-
native to co-training. The Yarowsky algorithm does have the advantage of placing less
restriction on the data sets it can be applied to. Co-training requires data attributes to
be separable into two views that are conditionally independent given the target label;
the Yarowsky algorithm makes no such assumption about its data.

In previous work, I did propose an assumption about the data called precision inde-
pendence under which the Yarowsky algorithm could be shown effective (Abney, 2002).
That assumption is ultimately unsatisfactory, however, not only because it restricts the
data sets on which the algorithm can be shown effective, but for additional internal rea-
sons. A detailed discussion would take us too far afield here, but suffice it to say that
precision independence is a property that it would be preferable not to assume, but rather
to derive from more basic properties of a data set; and that closer empirical study shows

c© 0 Association for Computational Linguistics

Abney Yarowsky Algorithm

Y-1/DL-EM-Λ EM inner loop that uses labeled examples only
Y-1/DL-EM-X EM inner loop that uses all examples
Y-1/DL-1-R Near-original Yarowsky inner loop, no smoothing
Y-1/DL-1-VS Near-original Yarowsky inner loop, “variable smoothing”
YS-P Sequential update, “anti-smoothing”
YS-R Sequential update, no smoothing
YS-FS Sequential update, original Yarowsky smoothing

Table 1
The Yarowsky algorithm variants. Y-1/DL-EM reduces H; the others reduce K.

that precision independence fails to be satisfied in some data sets on which the Yarowsky
algorithm is effective.

This paper proposes a different approach. Instead of making assumptions about the
data, it views the Yarowsky algorithm as optimizing an objective function. We will show
that several variants of the algorithm (though not the algorithm in precisely its original
form) optimize either negative log likelihood H or an alternative objective function, K,
that upper bounds H.

Ideally, we would like to show that the Yarowsky algorithm minimizes H. Unfortu-
nately, we are not able to do so. But we are able to show that a variant of the Yarowsky
algorithm, which we call Y-1/DL-EM, decreases H in each iteration. It combines the
“outer loop” of the Yarowsky algorithm with a different “inner loop” based on the
Expectation-Maximization (EM) algorithm.

A second proposed variant of the Yarowsky algorithm, Y-1/DL-1, has the advantage
that its inner loop is very similar to the original Yarowsky inner loop, unlike Y-1/DL-EM,
whose inner loop bears little resemblance to the original. Y-1/DL-1 has the disadvantage
that it does not directly reduce H, but we show that it does reduce the alternative
objective function K.

We also consider a third variant, YS. It differs from Y-1/DL-EM and Y-1/DL-1 in
that it does sequential update (adding a single rule in each iteration), rather than parallel
update (updating all rules in each iteration). Besides the intrinsic interest of sequential
update, YS can be proven effective when using exactly the same smoothing method as
used in the original Yarowsky algorithm, in contrast to Y-1/DL-1, which uses either no
smoothing or a nonstandard “variable smoothing”. YS is proven to decrease K.

The Yarowsky algorithm variants that we consider are summarized in table 1. To
the extent that these variants capture the essence of the original algorithm, we have
a better formal understanding of its effectiveness. Even if the variants are deemed to
depart substantially from the original algorithm, we have at least obtained a family of
new bootstrapping algorithms that are mathematically understood.

2. The Generic Yarowsky Algorithm

2.1 The Original Algorithm Y-0
The original Yarowsky algorithm, which we call Y-0, is given in table 2. It is an iterative
algorithm. One begins with a “seed set” Λ(0) of labeled examples, and a set V(0) of unla-
beled examples. At each iteration, a classifier is constructed from the labeled examples;
then the classifier is applied to the unlabeled examples to create a new labeled set.

To discuss the algorithm formally, we require some notation. We assume first a set
of examples X and a feature-set Fx for each x ∈ X. The set of examples with feature f
is Xf . Note that x ∈ Xf if and only if f ∈ Fx.

We also require a series of labelings Y (t), where t represents the iteration number.

2

Abney Yarowsky Algorithm

(1) Given: examples X, and initial labeling Y (0)

(2) For t ∈ {0, 1, . . .}
(2.1) Train classifier on labeled examples (Λ(t), Y (t)), where Λ(t) = {x ∈ X|Y (t) 6= ⊥}

The resulting classifier predicts label j for example x with probability π
(t+1)
x (j)

(2.2) For each example x ∈ X:

(2.2.1) Set ŷ = arg maxj π
(t+1)
x (j)

(2.2.2) Set Y
(t+1)

x =

 Y
(0)

x if x ∈ Λ(0)

ŷ if π
(t+1)
x (ŷ) > ζ

⊥ otherwise

(2.3) If Y (t+1) = Y (t), stop

Table 2
The generic Yarowsky algorithm (Y-0)

3

Abney Yarowsky Algorithm

X set of examples, both labeled and unlabeled

Y the current labeling; Y (t) is the labeling at iteration t
Λ the (current) set of labeled examples
V the (current) set of unlabeled examples
x an example index
f , g feature indices
j, k label indices
Fx the features of example x
Yx the label of example x, value is undefined (⊥) if x is unlabeled
Xf , Λf , Vf examples (labeled examples, unlabeled examples) that have feature f
Λj , Λfj examples with label j, with feature f and label j
m the number of features of a given example: |Fx| (cf. eq. 12)
L the number of labels
φx(j) labeling distribution (eq. 5)
πx(j) prediction distribution (eq. 12; except for DL-0, which uses eq. 11)
θfj score for rule f → j; we view θf as the prediction distribution of f
ŷ label that maximizes πx(j) for given x (eq. 1)
[[Φ]] truth value of Φ: value is 0 or 1
H objective function, negative log likelihood (eq. 6)
H(p) entropy of distribution p
H(p||q) cross entropy: −

∑
x

p(x) log q(x) (cf. eqq. 2 and 3)
K objective function, upper bound on H (eq. 20)
qf (j) precision of rule f → j (eq. 9)
q̃f (j) smoothed precision (eq. 10)
q̂f (j) “peaked” precision (eq. 25)
j† the label that maximizes precision qf (j) for a given feature f (eq. 26)
j∗ the label that maximizes rule score θfj for a given feature f (eq. 28)
u(·) uniform distribution

Table 3
Summary of notation.

We write Y (t)
x for the label of example x under labeling Y (t). An unlabeled example is

one for which Y
(t)
x is undefined, in which case we write Y (t)

x = ⊥. We write V(t) for the
set of unlabeled examples, and Λ(t) for the set of labeled examples. It will also be useful
to have a notation for the set of examples with label j:

Λ(t)
j ≡ {x ∈ X|Y (t)

x = j 6= ⊥}

Note that Λ(t) is the disjoint union of the sets Λ(t)
j . When t is clear from context, we

drop the superscript “(t)” and write simply Λj , V, Yx, etc.
At the risk of ambiguity, we will also sometimes write Λf for the set of labeled exam-

ples with feature f , trusting to the index to discriminate between Λf (labeled examples
with feature f) and Λj (labeled examples with label j). We always use f and g to repre-
sent features, and j and k to represent labels. The reader may wish to refer to table 3,
which summarizes notation used throughout the paper.

In each iteration, the Yarowsky algorithm uses a supervised learner to train a classifier
on the labeled examples. Let us call this supervised learner the base learning algorithm;
it is a function from (X,Y (t)) to a classifier π drawn from a space of classifiers Π. It is
assumed that the classifier makes confidence-weighted predictions. That is, the classifier
defines a scoring function π(x, j), and the predicted label for example x is

ŷ ≡ arg max
j
π(x, j) (1)

Ties are broken arbitrarily. Technically, we assume a fixed order over labels, and define

4

Abney Yarowsky Algorithm

the maximization to return the first label in the ordering, in case of a tie.
It will be convenient to assume that the scoring function is nonnegative and bounded,

in which case we can normalize it to make π(x, j) a conditional distribution over labels
j for a given example x. Henceforward, we write πx(j) instead of π(x, j), understanding
πx to be a probability distribution over labels j. We call this distribution the prediction
distribution of the classifier on example x.

To complete an iteration of the Yarowsky algorithm, one recomputes labels for ex-
amples. Specifically, the label ŷ is assigned to example x if the score πx(ŷ) exceeds a
threshold ζ, called the labeling threshold. The new labeled set Λ(t+1) contains all exam-
ples for which πx(ŷ) > ζ. Relabeling applies only to examples in V(0). The labels for
examples in Λ(0) are indelible, because Λ(0) constitutes the original manually labeled
data, as opposed to data that has been labeled by the learning algorithm itself.

The algorithm continues until convergence. The particular base learning algorithm
that Yarowsky uses is deterministic, in the sense that the classifier induced is a deter-
ministic function of the labeled data. Hence, the algorithm is known to have converged
whenever the labeling remains unchanged.

Note that the algorithm as stated leaves the base learning algorithm unspecified. We
can distinguish between the generic Yarowsky algorithm Y-0, for which the base learning
algorithm is an open parameter, and the specific Yarowsky algorithm, which includes a
specification of the base learner. Informally, we call the generic algorithm the “outer
loop” and the base learner the “inner loop” of the specific Yarowsky algorithm. The
base learner that Yarowsky assumes is a decision list induction algorithm. We postpone
discussion of it until section 3.

2.2 An Objective Function
Machine learning algorithms are typically designed to optimize some objective function
that represents a formal measure of performance. The maximum likelihood criterion is
the most commonly used objective function. Suppose we have a set of examples Λ with
labels Yx for x ∈ Λ, and a parametric family of models πθ such that π(j|x; θ) represents
the probability of assigning label j to example x, according to the model. The likelihood
of θ is the probability of the full data set according to the model, viewed as a function
of θ, and the maximum likelihood criterion instructs us to choose the parameter settings
θ̂ that maximize likelihood, or equivalently, log likelihood:

l(θ) = log
∏
x∈Λ

π(Yx|x; θ)

=
∑
x∈Λ

log π(Yx|x; θ)

=
∑
x∈Λ

∑
j

[[j = Yx]] log π(j|x; θ)

(The notation “[[Φ]]” represents the truth value of the proposition Φ; it is 1 if Φ is true
and 0 otherwise.)

Let us define:
φx(j) = [[j = Yx]] for x ∈ Λ

Note that φx satisfies the formal requirements of a probability distribution over labels j:
specifically, it is a point distribution with all its mass concentrated on Yx. We call it the
labeling distribution. Now we can write:

l(θ) =
∑
x∈Λ

∑
j

φx(j) log π(j|x; θ)

5

Abney Yarowsky Algorithm

= −
∑
x∈Λ

H(φx||πx) (2)

In (2) we have written πx for the distribution π(·|x; θ), leaving the dependence on θ
implicit. We have also used the nonstandard notation H(p||q) for what is sometimes
called “cross entropy”. It is easy to verify that:

H(p||q) = H(p) +D(p||q) (3)

where H(p) is the entropy of p and D is Kullback-Leibler divergence. Note that, when p
is a point distribution, H(p) = 0 and hence H(p||q) = D(p||q). In particular:

l(θ) = −
∑
x∈Λ

D(φx||πx) (4)

Thus when, as here, φx is a point distribution, we can restate the maximum likelihood
criterion as instructing us to choose the model that minimizes the total divergence be-
tween the empirical labeling distributions φx and the model’s prediction distributions
πx.

To extend l(θ) to unlabeled examples, we need only observe that unlabeled examples
are ones about whose labels the data provide no information. Accordingly, we revise the
definition of φx to treat unlabeled examples as ones whose labeling distribution is the
maximally uncertain distribution, which is to say, the uniform distribution:

φx(j) =
{

[[j = Yx]] for x ∈ Λ
1
L for x ∈ V (5)

where L is the number of labels. Equivalently:

φx(j) = [[x ∈ Λj]] + [[x ∈ V]]
1
L

When we replace “Λ” with “X”, the expressions (2) and (4) are no longer equivalent;
we must use (2). Since H(φx||πx) = H(φx) +D(φx||πx), and H(φx) is minimized when x
is labeled, minimizing H(φx||πx) forces one to label unlabeled examples. On labeled ex-
amples, H(φx||πx) = D(φx||πx), and D(φx||πx) is minimized when the labels of examples
agree with the predictions of the model.

In short, we adopt as objective function

H ≡
∑
x∈X

H(φx||πx) = −l(φ, θ) (6)

We seek to minimize H.

2.3 The Modified Algorithm Y-1
We can show that a modified version of the Yarowsky algorithm finds a local minimum
of H. Two modifications are necessary.

•The labeling function Y is recomputed in each iteration as before, but with the
constraint that an example once labeled stays labeled. The label may change,
but a labeled example cannot become unlabeled again.

•We eliminate the threshold ζ, or (equivalently) fix it at 1/L. As a result, the
only examples that remain unlabeled after the labeling step are those for which
πx is the uniform distribution. The problem with an arbitrary threshold is that
it prevents the algorithm from converging to a minimum of H. A threshold
that gradually decreases to 1/L would also address the problem, but would
complicate the analysis.

6

Abney Yarowsky Algorithm

(1) Given: X, Y (0)

(2) For t ∈ {0, 1, . . .}
(2.1) Train classifier on (Λ(t), Y (t)); result is π(t+1)

(2.2) For each example x ∈ X:

(2.2.1) Set ŷ = arg maxj π
(t+1)
x (j)

(2.2.2) Set Y
(t+1)

x =

 Y
(0)

x if x ∈ Λ(0)

ŷ if x ∈ Λ(t) ∨ π
(t+1)
x (ŷ) > 1/L

⊥ otherwise

(2.3) If Y (t+1) = Y (t), stop

Table 4
The modified generic Yarowsky algorithm (Y-1)

The modified algorithm, Y-1, is given in table 4.
To obtain a proof, it will be necessary to make an assumption about the supervised

classifier π(t+1) induced by the base learner in step (2.1). A natural assumption is that
the base learner chooses π(t+1) so as to minimize

∑
x∈Λ(t) D(φ(t)

x ||π(t+1)
x). A weaker as-

sumption will suffice, however. We assume that the base learner reduces divergence, if
possible. That is, we assume:

∆DΛ ≡
∑

x∈Λ(t)

D(φ(t)
x ||π(t+1)

x)−
∑

x∈Λ(t)

D(φ(t)
x ||π(t)

x) ≤ 0 (7)

with equality only if there is no classifier π(t+1) ∈ Π that makes ∆DΛ < 0. Note that any
learning algorithm that minimizes

∑
x∈Λ(t) D(φ(t)

x ||π(t+1)
x) satisfies the weaker assumption

(7), inasmuch as the option of setting π(t+1)
x = π

(t)
x is always available.

We also consider a somewhat stronger assumption, namely, that the base learner
reduces divergence over all examples, not just over labeled examples:

∆DX ≡
∑
x∈X

D(φ(t)
x ||π(t+1)

x)−
∑
x∈X

D(φ(t)
x ||π(t)

x) ≤ 0 (8)

If a base learning algorithm satisfies (8), the proof of theorem 1 is shorter; but (7) is the
more natural condition for a base learner to satisfy.

We can now state the main theorem of this section.

Theorem 1
If the base learning algorithm satisfies (7) or (8), algorithm Y-1 decreases H at each
iteration until it reaches a critical point of H.

There is a lemma that we require in order to prove the theorem.

Lemma 1
For all distributions p

H(p) ≥ log
1

maxj p(j)
with equality iff p is the uniform distribution.

Proof. By definition, for all k:

p(k) ≤ max
j
p(j)

7

Abney Yarowsky Algorithm

log
1

p(k)
≥ log

1
maxj p(j)

Since this is true for all k, it is true if we take the expectation with respect to p:∑
k

p(k) log
1

p(k)
≥

∑
k

p(k) log
1

maxj p(j)

H(p) ≥ log
1

maxj p(j)

We have equality only if p(k) = maxj p(j) for all k, that is, only if p is the uniform
distribution. 2

We now prove the theorem.

Proof of theorem 1. The algorithm produces a sequence of labelings φ(0), φ(1), . . . and
a sequence of classifiers π(1), π(2), The classifier π(t+1) is trained on φ(t), and the
labeling φ(t+1) is created using π(t+1).

Recall that:
H =

∑
x∈X

[H(φx) +D(φx||πx)]

In the training step (2.1), we hold φ fixed and change π, and in the labeling step (2.2),
we hold π fixed and change φ. We will show that the training step minimizes H as a
function of π, and the labeling step minimizes H as a function of φ except on examples
where it is at a critical point of H. Hence, H is non-increasing in each iteration of the
algorithm, and is strictly decreasing unless (φ(t), π(t)) is a critical point of H.

Let us consider the labeling step first. In this step, π is held constant, but φ (possibly)
changes, and we have:

∆H =
∑
x∈X

∆H(x)

where
∆H(x) ≡ H(φ(t+1)

x ||π(t+1)
x)−H(φ(t)

x ||π(t+1)
x)

We can show that ∆H is nonpositive if we can show that ∆H(x) is nonpositive for all x.
We can guarantee that ∆H(x) ≤ 0 if φ(t+1) minimizes H(p||π(t+1)

x) viewed as a
function of p. By definition:

H(p||π(t+1)
x) =

∑
j

pj log
1

π
(t+1)
x (j)

We wish to find the distribution p that minimizes H(p||π(t+1)
x). Clearly, we accomplish

that by placing all the mass of p in pj∗ where j∗ minimizes − log π(t+1)
x (j). If there is

more than one minimizer, H(p||π(t+1)
x) is minimized by any distribution p that distributes

all its mass among the minimizers of − log π(t+1)
x (j). Observe further that

arg min
j

log
1

π
(t+1)
x (j)

= arg max
j
π(t+1)

x (j)

= ŷ

That is, we minimize H(p||π(t+1)
x) by setting pj = [[j = ŷ]], which is to say, by labeling x as

predicted by π(t+1). That is how algorithm Y-1 defines φ(t+1)
x for all examples x ∈ Λ(t+1)

whose labels are modifiable (that is, excluding x ∈ Λ(0)).

8

Abney Yarowsky Algorithm

Note that φ(t+1)
x does not minimize H(p||π(t+1)

x) for examples x ∈ V(t+1), that is,
for examples x that remain unlabeled at t+ 1. However, in algorithm Y-1, any example
that is unlabeled at t + 1 is necessarily also unlabeled at t, so for any such example,
∆H(x) = 0. Hence, if any label changes in the labeling step, H decreases, and if no label
changes, H remains unchanged; in either case, H does not increase.

We can show further that even for examples x ∈ V(t+1), the labeling distribution
φ

(t+1)
x assigned by Y-1 represents a critical point of H. For any example x ∈ V(t+1), the

prediction distribution π
(t+1)
x is the uniform distribution (otherwise Y-1 would have la-

beled x). Hence the divergence between φ(t+1) and π(t+1) is zero, and thus at a minimum.
It would be possible to decrease H(φ(t+1)

x ||π(t+1)
x) by decreasing H(φ(t+1)

x) at the cost of
an increase in D(φ(t+1)

x ||π(t+1)
x), but all directions of motion (all ways of selecting labels

to receive increased probability mass) are equally good. That is to say, the gradient of
H is zero; we are at a critical point.

Essentially, we have reached a saddle point. We have minimized H with respect to
φx(j) along those dimensions with a non-zero gradient. Along the remaining dimensions,
we are actually at a local maximum, but without a gradient to choose a direction of
descent.

Now let us consider the training step (2.1). In this step, φ is held constant, so the
change in H is equal to the change in D—recall that H(φ||π) = H(φ) +D(φ||π). By the
hypothesis of the theorem, there are two cases: either the base learner satisfies (7) or
(8). If it satisfies (8), the base learner minimizes D as a function of π, hence it follows
immediately that it minimizes H as a function of π.

Suppose instead that the base learner satisfies (7). We can express H as

H =
∑
x∈X

H(φx) +
∑

x∈Λ(t)

D(φx||πx) +
∑

x∈V(t)

D(φx||πx)

In the training step, the first term remains constant. The second term decreases, by
hypothesis. But the third term may increase. However, we can show that any increase in
the third term is more than offset in the labeling step.

Consider an arbitrary example x in V(t). Since it is unlabeled at time t, we know
that φ(t)

x is the uniform distribution u:

u(j) =
1
L

Moreover, π(t)
x must also be the uniform distribution; otherwise example x would have

been labeled in a previous iteration. Therefore the value of H(x) = H(φx||πx) at the
beginning of iteration t is H0:

H0 =
∑

j

φ(t)
x (j) log

1

π
(t)
x (j)

=
∑

j

u(j) log
1

u(j)
= H(u)

After the training step, the value is H1:

H1 =
∑

j

φ(t)
x (j) log

1

π
(t+1)
x (j)

If πx remains unchanged in the training step, then the new distribution π
(t+1)
x , like the

old one, is the uniform distribution, and the example remains unlabeled. Hence there is
no change in H, and in particular, H is non-increasing, as desired. On the other hand,

9

Abney Yarowsky Algorithm

if πx does change, then the new distribution π
(t+1)
x is non-uniform, and the example is

labeled in the labeling step. Hence the value of H(x) at the end of the iteration, after
the labeling step, is H2:

H2 =
∑

j

φ(t+1)
x (j) log

1

π
(t+1)
x (j)

= log
1

π
(t+1)
x (ŷ)

By lemma 1, H2 < H(u); hence H2 < H0.
As we observed above, H1 > H0, but if we consider the change overall, we find that

the increase in the training step is more than offset in the labeling step:

∆H(x) = H2 −H1 +H1 −H0 < 0

2

3. The Specific Yarowsky Algorithm

3.1 The Original Decision List Induction Algorithm DL-0
When one speaks of the Yarowsky algorithm, one often has in mind not just the generic
algorithm Y-0 (or Y-1), but an algorithm whose specification includes the particular
choice of base learning algorithm made by Yarowsky. Specifically, Yarowsky’s base learner
constructs a decision list, that is, a list of rules of form f → j, where f is a feature and
j is a label, with score θfj . A rule f → j matches example x if x possesses the feature
f . The label predicted for a given example x is the label of the highest-scoring rule that
matches x.

Yarowsky uses smoothed precision for rule scoring. As the name suggests, smoothed
precision q̃f (j) is a smoothed version of (raw) precision qf (j), which is the probability
that rule f → j is correct given that it matches:

qf (j) ≡
{
|Λfj |/|Λf | if |Λf | > 0
1/L otherwise (9)

where Λf is the set of labeled examples that possess feature f , and Λfj is the set of
labeled examples with feature f and label j.

Smoothed precision q̃(j|f ; ε) is defined as follows:

q̃(j|f ; ε) ≡ |Λfj |+ ε

|Λf |+ Lε
(10)

We also write q̃f (j) when ε is clear from context.
Yarowsky defines a rule’s score to be its smoothed precision:

θfj = q̃f (j)

Anticipating later needs, we will also consider raw precision as an alternative: θfj =
qf (j). Both raw and smoothed precision have the properties of a conditional probability
distribution. Generally, we view θfj as a conditional distribution over labels j for a fixed
feature f .

Yarowsky defines the confidence of the decision list to be the score of the highest-
scoring rule that matches the instance being classified. This is equivalent to defining:

πx(j) ∝ max
f∈Fx

θfj (11)

10

Abney Yarowsky Algorithm

(0) Given: a fixed value for ε > 0
Initialize arrays N [f, j] = 0, Z[f] = 0 for all f , j

(1) For each example x ∈ Λ
(1.1) Let j be the label of x
(1.2) Increment N [f, j], Z[f], for each feature f of x

(2) For each feature f and label j

(2.1) Set θfj = N [f,j]+ε
Z[f]+Lε

(*) Define πx(j) ∝ maxf∈Fx θfj

Table 5
The decision list induction algorithm DL-0. The value accumulated in N [f, j] is |Λfj | and the
value accumulated in Z[f] is |Λf |.

(Recall that Fx is the set of features of x.) Since the classifier’s prediction for x is defined,
in equation (1), to be the label that maximizes πx(j), definition (11) implies that the
classifier’s prediction is the label of the highest-scoring rule matching x, as desired.

We have written “∝” in (11) rather than “=” because maximizing θfj across f ∈ Fx

for each label j will not in general yield a probability distribution over labels – though
the scores will be positive and bounded, hence normalizable. Considering only the final
predicted label ŷ for a given example x, the normalization will have no effect, inasmuch
as all scores θfj being compared will be scaled in the same way.

As characterized by Yarowsky, a decision list contains only those rules f → j whose
score q̃f (j) exceeds the labeling threshold ζ. This can be seen purely as an efficiency
measure. Including rules whose score falls below the labeling threshold will have no
effect on the classifier’s predictions, as the threshold will be applied when the classifier
is applied to examples. For this reason, we do not prune the list. That is, we represent a
decision list as a set of parameters {θfj}, one for every possible rule f → j in the cross
product of the set of features and the set of labels.

The decision-list induction algorithm used by Yarowsky is summarized in table 5;
we call it DL-0. Note that the step labeled “(*)” is not actually a step of the induction
algorithm, but rather specifies how the decision list is used to compute a prediction
distribution πx for a given example x.

Unfortunately, we cannot prove anything about DL-0 as it stands. In particular,
we are unable to show that DL-0 reduces divergence between prediction and labeling
distributions (7). In the next section, we describe an alternative decision list induction
algorithm, called DL-EM, that does satisfy (7); hence we can apply theorem 1 to the
combination Y-1/DL-EM to show that it reduces H. However, a disadvantage of DL-EM
is that it does not resemble the algorithm DL-0 used by Yarowsky. We return in section
3.4 to a close variant of DL-0 called DL-1, and show that, though it does not directly
reduce H, it does reduce the upper bound K.

3.2 The Decision List Induction Algorithm DL-EM
The algorithm DL-EM is a special case of the Expectation-Maximization (EM) algorithm.
We consider two versions of the algorithm: DL-EM-Λ and DL-EM-X. They differ in that
DL-EM-Λ is trained on labeled examples only, whereas DL-EM-X is trained on labeled
and unlabeled examples. However, the basic outline of the algorithm is the same for both.

First, the DL-EM algorithms do not assume the definition of π that Yarowsky as-
sumed, given in (11). As mentioned above, the parameters θfj can be thought of as
defining a prediction distribution θf (j) over labels j for each feature f . Hence the equa-
tion (11) specifies how the prediction distributions θf for the features of example x are
to be combined to yield a prediction distribution πx for x. Instead of combining distri-

11

Abney Yarowsky Algorithm

butions by maximizing θfj across f ∈ Fx as in equation (11), DL-EM takes a mixture of
the θf :

πx(j) =
1
m

∑
f∈Fx

θfj (12)

Here m = |Fx| is the number of features that x possesses; for sake of simplicity, we assume
that all examples have the same number of features. Since θf is a probability distribution
for each f , and since any convex combination of distributions is also a distribution, it
follows that πx as defined in (12) is a probability distribution.

The two definitions for πx(j), (11) and (12), will often have the same mode ŷ, but
that is guaranteed only in the rather severely restricted case of two features and two
labels. Under definition (11), the prediction is determined entirely by the strongest θf ,
whereas definition (12) permits a bloc of weaker θf to outvote the strongest one. Yarowsky
explicitly wished to avoid the possibility of such interactions. Nonetheless, the definition
(12) used by DL-EM turns out to make analysis of other base learners more manageable,
and we will assume it henceforth, not only for DL-EM, but also for the algorithms DL-1
and YS discussed in subsequent sections.

DL-EM also differs from DL-0 in that DL-EM does not construct a classifier “from
scratch,” but rather seeks to improve on a previous classifier. In the context of the
Yarowsky algorithm, the previous classifier is the one from the previous iteration of the
outer loop. We write θoldfj for the parameters and πold

x for the prediction distributions of
the previous classifier.

Conceptually, DL-EM considers the label j assigned to an example x to be generated
by choosing a feature f ∈ Fx and then assigning the label j according to the feature’s
prediction distribution θf (j). The choice of feature f is a hidden variable. The degree to
which an example labeled j is imputed to feature f is determined by the old distribution:

πold(f |x, j) =
[[f ∈ Fx]]θoldfj∑
g [[g ∈ Fx]]θoldgj

=
[[f ∈ Fx]] 1

mθ
old
fj

πold
x (j)

One can think of πold(f |x, j) either as the posterior probability that feature f was re-
sponsible for the label j, or as the portion of the labeled example (x, j) that is imputed
to feature f . We also write πold

xj (f) as a synonym for πold(f |x, j). The new estimate θfj

is obtained by summing imputed occurrences of (f, j) and normalizing across labels. For
DL-EM-Λ, this takes the form:

θfj =

∑
x∈Λj

πold(f |x, j)∑
k

∑
x∈Λk

πold(f |x, k)

The algorithm is summarized in table 6.
The second version of the algorithm, DL-EM-X is summarized in table 7. It is like

DL-EM-Λ, except that it uses the update rule:

θfj =

∑
x∈Λj

πold(f |x, j) + 1
L

∑
x∈V π

old(f |x, j)∑
k

[∑
x∈Λk

πold(f |x, k) + 1
L

∑
x∈V π

old(f |x, k)
] (13)

The update rule (13) includes unlabeled examples as well as labeled examples. Con-
ceptually, it divides each unlabeled example equally among the labels, then divides the
resulting fractional labeled example among the example’s features.

We note that both variants of the DL-EM algorithm constitute a single iteration of
an EM-like algorithm. A single iteration suffices to prove the following theorem, though
multiple iterations would also be effective.

12

Abney Yarowsky Algorithm

(0) Initialize N [f, j] = 0 for all f , j
(1) For each example x labeled j

(1.1) Let Z =
∑

g∈Fx
θold

gj

(1.2) For each f ∈ Fx, increment N [f, j] by 1
Z

θold
fj

(2) For each feature f
(2.1) Let Z =

∑
j
N [f, j]

(2.2) For each label j, set θfj = 1
Z

N [f, j]

Table 6
DL-EM-Λ decision list induction algorithm

(0) Initialize N [f, j] = 0 and U [f, j] = 0, for all f , j
(1) For each example x labeled j

(1.1) Let Z =
∑

g∈Fx
θold

gj

(1.2) For each f ∈ Fx, increment N [f, j] by 1
Z

θold
fj

(2) For each unlabeled example x

(2.1) Let Z =
∑

g∈Fx
θold

gj

(2.2) For each f ∈ Fx, increment U [f, j] by 1
Z

θold
fj

(3) For each feature f
(3.1) Let Z =

∑
j
(N [f, j] + 1

L
U [f, j])

(3.2) For each label j, set θfj = 1
Z

(
N [f, j] + 1

L
U [f, j]

)
Table 7
DL-EM-X decision list induction algorithm

13

Abney Yarowsky Algorithm

Theorem 2
The classifier produced by the DL-EM-Λ algorithm satisfies equation (7), and the classi-
fier produced by the DL-EM-X algorithm satisfies equation (8).

Combining theorems 1 and 2 yields:

Corollary
The Yarowsky algorithm Y-1, using DL-EM-Λ or DL-EM-X as its base learning algo-
rithm, decreases H at each iteration until it reaches a critical point of H.

Proof of theorem 2. Let θold represent the parameter values at the beginning of the call
to DL-EM, let θ represent a family of free variables that we will optimize, and let πold

and π be the corresponding prediction distributions. The labeling distribution φ is fixed.
For any set of examples α, let ∆Dα be the change in

∑
x∈αD(φx||πx) resulting from the

change in θ. We are obviously particularly interested in the two cases where α is the
set of all examples X (for DL-EM-X) and where α is the set of labeled examples Λ (for
DL-EM-Λ). In either case, we will show that ∆Dα ≤ 0, with equality only if no choice
of θ decreases D.

We first derive an expression for −∆Dα that we will put to use shortly:

−∆Dα =
∑
x∈α

[
D(φx||πold

x)−D(φx||πx)
]

=
∑
x∈α

[
H(φx||πold

x)−H(φx)−H(φx||πx) +H(φx)
]

=
∑
x∈α

∑
j

φx(j)
[
log πx(j)− log πold

x (j)
]

(14)

The EM algorithm is based on the fact that divergence is non-negative, and strictly
positive if the distributions compared are not identical.

0 ≤
∑

j

∑
x∈α

φx(j)D(πold
xj ||πxj)

=
∑

j

∑
x∈α

φx(j)
∑

f∈Fx

πold
xj (f) log

πold
xj (f)
πxj(f)

=
∑

j

∑
x∈α

φx(j)
∑

f∈Fx

πold
xj (f) log

(
θoldfj

πold
x (j)

· πx(j)
θfj

)
Which yields the inequality:∑

j

∑
x∈α

φx(j)
[
log πx(j)− log πold

x (j)
]

≥
∑

j

∑
x∈α

φx(j)
∑

f∈Fx

πold
xj (f)

[
log θfj − log θoldfj

]
By (14), this can be written as:

−∆Dα ≥
∑

j

∑
x∈α

φx(j)
∑

f∈Fx

πold
xj (f)

[
log θfj − log θoldfj

]
(15)

Since θoldfj is constant, by maximizing∑
j

∑
x∈α

φx(j)
∑

f∈Fx

πold
xj (f) log θfj (16)

14

Abney Yarowsky Algorithm

we maximize a lower bound on −∆Dα. It is easy to see that −∆Dα is bounded above
by 0: we simply set θfj = θoldfj . Since divergence is zero only if the two distributions are
identical, we have strict inequality in (15) unless the best choice for θ is θold, in which
case no choice of θ makes ∆Dα < 0.

It remains to show that DL-EM computes the parameter set θ that maximizes (16).
We wish to maximize (16) under the constraints that the values {θfj} for fixed f sum to
unity across choices of j, so we apply Lagrange’s method. We express the constraints in
the form:

Cf = 0

where
Cf ≡

∑
j

θfj − 1

We seek a solution to the family of equations that results from expressing the gradient
of (16) as a linear combination of the gradients of the constraints:

∂

∂θfj

∑
k

∑
x∈α

φx(k)
∑
g∈Fx

πold
xk (g) log θgk = λf

∂Cf

∂θfj
(17)

We derive an expression for the derivative on the left hand side:

∂

∂θfj

∑
k

∑
x∈α

φx(k)
∑
g∈Fx

πold
xk (g) log θgk =

∑
x∈Xf∩α

φx(j)πold
xj (f)

1
θfj

Similarly for the right hand side:
∂Cf

∂θfj
= 1

Substituting these into equation (17):∑
x∈Xf∩α

φx(j)πold
xj (f)

1
θfj

= λf

θfj =
∑

x∈Xf∩α

φx(j)πold
xj (f)

1
λf

(18)

Using the constraint Cf = 0 and solving for λf :∑
j

∑
x∈Xf∩α

φx(j)πold
xj (f)

1
λf

− 1 = 0

λf =
∑

j

∑
x∈Xf∩α

φx(j)πold
xj (f)

Substituting back into (18):

θfj =

∑
x∈Xf∩α φx(j)πold

xj (f)∑
k

∑
x∈Xf∩α φx(k)πold

xk (f)
(19)

If we consider the case where α is the set of all examples, and expand out φx in (19),
we obtain:

θfj =
1
Z

 ∑
x∈Λfj

πold
xj (f) +

1
L

∑
x∈Vf

πold
xj (f)



15

Abney Yarowsky Algorithm

where Z normalizes θf . It is not hard to see that this is the update rule that DL-EM-X
computes, using the intermediate values:

N [f, j] =
∑

x∈Λfj

πold
xj (f)

U [f, j] =
∑

x∈Vf

πold
xj (f)

If we consider the case where α is the set of labeled examples, and expand out φx in (19),
we obtain:

θfj =
1
Z

∑
x∈Λfj

πold
xj (f)

This is the update rule that DL-EM-Λ computes. Thus we see that DL-EM-X reduces
DX , and DL-EM-Λ reduces DΛ. 2

We note in closing that DL-EM-X can be simplified when used with algorithm Y-1,
inasmuch as it is known that θfj = 1/L for all (f, j) where f ∈ Fx for some x ∈ V. Then
the expression for U [f, j] simplifies as follows:∑

x∈Vf

πold
xj (f)

=
∑

x∈Vf

[
1/L∑

g∈Fx
1/L

]

=
|Vf |
m

The dependence on j disappears, so we can replace U [f, j] with U [f] in algorithm DL-
EM-X, delete step (2.1), and replace step (2.2) with the statement “For each f ∈ Fx,
increment U [f] by 1/m”.

3.3 The Objective Function K
Y-1/DL-EM is the only variation on the Yarowsky algorithm that we can show to reduce
negative log likelihood, H. The variants that we discuss in the remainder of the paper,
Y-1/DL-1 and YS, reduce an alternative objective function, K, which we now define.

The value K (or, more precisely, the value K/m) is an upper bound on H, which we
derive using Jensen’s inequality, as follows:

H = −
∑
x∈X

∑
j

φxj log
∑
g∈Fx

1
m
θgj

≤ −
∑
x∈X

∑
j

φxj

∑
g∈Fx

1
m

log θgj

=
1
m

∑
x∈X

∑
g∈Fx

H(φx||θg)

We define:
K ≡

∑
x∈X

∑
g∈Fx

H(φx||θg) (20)

By minimizing K, we minimize an upper bound on H. Moreover, it is in principle possible
to reduce K to zero. Since H(φx||θg) = H(φx)+D(φx||θg), K is reduced to zero if all ex-
amples are labeled, each feature concentrates its prediction distribution in a single label,

16

Abney Yarowsky Algorithm

(0) Initialize N [f, j] = 0, Z[f] = 0 for all f , j
(1) For each example-label pair (x, j)

(1.1) For each feature f ∈ Fx, increment N [f, j], Z[f]
(2) For each feature f and label j

(2.1) Set θfj = N [f,j]
Z[f]

(*) Define πx(j) = 1
m

∑
f∈Fx

θfj

Table 8
The decision list induction algorithm DL-1-R

(0) Initialize N [f, j] = 0, Z[f] = 0, U [f] = 0 for all f , j
(1) For each example-label pair (x, j)

(1.1) For each feature f ∈ Fx, increment N [f, j], Z[f]
(2) For each unlabeled example x

(2.1) For each feature f ∈ Fx, increment U [f]
(3) For each feature f and label j

(3.1) Set ε = U [f]/L

(3.2) Set θfj = N [f,j]+ε
Z[f]+U [f]

(*) Define πx(j) = 1
m

∑
f∈Fx

θfj

Table 9
The decision list induction algorithm DL-1-VS

and the label of every example agrees with the prediction of every feature it possesses.
In this limiting case, any minimizer of K is also a minimizer of H.

We hasten to add a proviso: it is not possible to reduceK to zero for all data sets. The
following provides a necessary and sufficient condition. Consider an undirected bipartite
graph G whose nodes are examples and features. There is an edge between example x
and feature f just in case f is a feature of x. Define examples x1 and x2 to be neighbors
if they both belong to the same connected component of G. K is reducible to zero if and
only if x1 and x2 have the same label according to Y (0), for all pairs of neighbors x1 and
x2 in Λ(0).

3.4 Algorithm DL-1
We consider two variants of DL-0, called DL-1-R and DL-1-VS. They differ from DL-0
in two ways. First, the DL-1 algorithms assume the “mean” definition of πx given in
equation (12) rather than the “max” definition of equation (11). This is not actually a
difference in the induction algorithm itself, but in the way the decision list is used to
construct a prediction distribution πx.

Second, the DL-1 algorithms use update rules that differ from the smoothed precision
of DL-0. DL-1-R (table 8) uses raw precision instead of smoothed precision. DL-1-VS (ta-
ble 9) uses smoothed precision, but unlike DL-0, DL-1-VS does not use a fixed smoothing
constant ε; rather ε varies from feature to feature. Specifically, in computing the score
θfj , DL-1-VS uses |Vf |/L as its value for ε.

The value of ε used by DL-1-VS can be expressed in another way that will prove
useful. Let us define:

p(Λ|f) ≡ |Λf |
|Xf |

p(V|f) ≡ |Vf |
|Xf |

17

Abney Yarowsky Algorithm

Lemma 2
The parameter values {θfj} computed by DL-1-VS can be expressed as:

θfj = p(Λ|f)qf (j) + p(V|f)u(j) (21)

where u(j) is the uniform distribution over labels.

Proof. If |Λf | = 0, then p(Λ|f) = 0 and θfj = u(j). Further, N [f, j] = Z[f] = 0, so
DL-1-VS computes θfj = u(j), and the lemma is proved. Hence we need only consider
the case |Λf | > 0.

First we show that smoothed precision can be expressed as a convex combination of
raw precision (9) and the uniform distribution. Define δ = ε/|Λf |. Then:

q̃f (j) =
|Λfj |+ ε

|Λf |+ Lε

=
|Λfj |/|Λf |+ δ

1 + Lδ

=
1

1 + Lδ
qf (j) +

Lδ

1 + Lδ
· δ
Lδ

=
1

1 + Lδ
qf (j) +

Lδ

1 + Lδ
u(j) (22)

Now we show that the mixing coefficient 1/(1 + Lδ) of (22) is the same as the mixing
coefficient p(Λ|f) of the lemma, when ε = |Vf |/L as in step (3.1) of DL-1-VS.

ε =
|Vf |
L

=
|Λf |
L

· p(V|f)
p(Λ|f)

Lδ =
1

p(Λ|f)
− 1

1
1 + Lδ

= p(Λ|f)

2

The main theorem of this section (theorem 5) is that the specific Yarowsky algorithm
Y-1/DL-1 decreases K in each iteration until it reaches a critical point. It is proved as
a corollary of two theorems. The first (theorem 3) shows that DL-1 minimizes K as a
function of θ, holding φ constant, and the second (theorem 4) shows that Y-1 decreases K
as a function of φ, holding θ constant. More precisely, DL-1-R minimizes K over labeled
examples Λ, and DL-1-VS minimizes K over all examples X. Either is sufficient for Y-1
to be effective.

Theorem 3
DL-1 minimizes K as a function of θ holding φ constant. Specifically, DL-1-R minimizes
K over labeled examples Λ, and DL-1-VS minimizes K over all examples X.

Proof. We wish to minimize K as a function of θ under the constraints:

Cf ≡
∑

j

θfj − 1 = 0

18

Abney Yarowsky Algorithm

for each f . As before, to minimize K under the constraints Cf = 0, we express the
gradient of K as a linear combination of the gradients of the constraints, and solve the
resulting system of equations:

∂K

∂θfj
= λf

∂Cf

∂θfj
(23)

First we derive expressions for the derivatives of Cf and K. The variable α represents
the set of examples over which we are minimizing K.

∂Cf

∂θfj
= 1

∂K

∂θfj
= − ∂

∂θfj

∑
x∈α

∑
g∈Fx

∑
k

φxk log θgk

= −
∑

x∈Xf∩α

φxj
1
θfj

We substitute these expressions into (23) and solve for θfj :

−
∑

x∈Xf∩α

φxj
1
θfj

= λf

θfj = −
∑

x∈Xf∩α

φxj/λf

Substituting the latter expression into the equation for Cf = 0 and solving for f :

∑
j

− ∑
x∈Xf∩α

φxj/λf

 = 1

−|Xf ∩ α| = λf

Substituting this back into the expression for θfj :

θfj =
1

|Xf ∩ α|
∑

x∈Xf∩α

φxj (24)

If α = Λ, we have:

θfj =
1

|Λf |
∑

x∈Λf

[[x ∈ Λj]]

= qf (j)

This is the update computed by DL-1-R, showing that DL-1-R computes the parameter
values {θfj} that minimize K over the labeled examples Λ.

If α = X, we have:

θfj =
1

|Xf |
∑

x∈Λf

[[x ∈ Λj]] +
1

|Xf |
∑

x∈Vf

1
L

=
|Λf |
|Xf |

· |Λfj |
|Λf |

+
|Vf |
|Xf |

· 1
L

= p(Λ|f) · qf (j) + p(V|f) · u(j)

By lemma 2, this is the update computed by DL-1-VS, hence DL-1-VS minimizes K over
the complete set of examples X. 2

19

Abney Yarowsky Algorithm

Theorem 4
If the base learner decreases K over X or over Λ, where the prediction distribution is
computed as

πx(j) =
1
m

∑
f∈Fx

θfj

then algorithm Y-1 decreases K at each iteration until it reaches a critical point, consid-
ering K as a function of φ with θ held constant.

The proof has the same structure as the proof of theorem 1, so we give only a sketch
here. We minimize K as a function of φ by minimizing it for each example separately.

K(x) =
∑
g∈Fx

H(φx||θg)

=
∑

j

φxj

∑
g∈Fx

log
1
θgj

To minimize K(x), we choose φxj so as to concentrate all mass in

arg min
j

∑
g∈Fx

log
1
θgj

= arg max
j
πx(j)

This is the labeling rule used by Y-1.
If the base learner minimizes over Λ only, rather than X, it can be shown that any

increase in K on unlabeled examples is compensated for in the labeling step, as in the
proof of theorem 1. 2

Theorem 5
The specific Yarowsky algorithms Y-1/DL-1-R and Y-1/DL-1-VS decrease K at each
iteration until they reach a critical point.

Proof. Immediate from theorems 3 and 4. 2

4. Sequential Algorithms

4.1 The Family YS
The Yarowsky algorithm variants we have considered to now do “parallel” updates in
the sense that the parameters {θfj} are completely recomputed at each iteration. In this
section, we consider a family YS of “sequential” variants of the Yarowsky algorithm, in
which a single feature is selected for update at each iteration. The YS algorithms resemble
the “Yarowsky-Cautious” algorithm of Collins & Singer (1999), though they differ from
the Yarowsky-Cautious algorithm in that they update a single feature in each iteration,
rather than a small set of features, as in Yarowsky-Cautious. The YS algorithms are
intended to be as close to the Y-1/DL-1 algorithm as is consonant with single-feature
updates. The YS algorithms differ from each other, and from Y-1/DL-1, in the choice
of update rule. An interesting range of update rules work in the sequential setting. In
particular, smoothed precision with fixed ε, as in the original algorithm Y-0/DL-0, works
in the sequential setting, though with a proviso that will be spelled out later.

Instead of an initial labeled set, there is an initial classifier consisting of a set of
selected features S0 and initial parameter set θ(0) with θ(0)fj = 1/L for all f 6∈ S0.

20

Abney Yarowsky Algorithm

(0) Given: S(0), θ(0) with θ
(0)
gj = 1/L for g 6∈ S(0)

(1) Initialization

(1.1) Set S = S(0), θ = θ(0)

(1.2) For each example x ∈ X

If x possesses a feature in S(0), set Yx = ŷ, else set Yx = ⊥
(2) Loop:

(2.1) Choose a feature f 6∈ S(0) such that Λf 6= ∅ and θf 6= qf

If there is none, stop
(2.2) Add f to S
(2.3) For each label j, set θfj = update(f, j)
(2.4) For each example x possessing a feature in S, set Yx = ŷ

Table 10
The sequential algorithm YS

At each iteration, one feature is selected to be added to the selected set. A feature
once selected remains in the selected set. It is permissible for a feature to be selected
more than once; this permits us to continue reducing K even after all features have been
selected. In short, there is a sequence of selected features f0, f1, . . ., and

St+1 = St ∪ {ft}

The parameters for the selected feature are also updated. At iteration t, the param-
eters θgj with g = ft may be modified, but all other parameters remain constant. That
is:

θ
(t+1)
gj = θ

(t)
gj for g 6= ft

It follows that, for all t:

θ
(t)
gj =

1
L

for g 6∈ St

However, parameters for features in S0 may not be modified, inasmuch as they play the
role of manually labeled data.

In each iteration, one selects a feature ft and computes (or recomputes) the prediction
distribution θft

for the selected feature ft. Then labels are recomputed as follows. Recall
that ŷ ≡ arg maxj πx(j), where we continue to assume πx(j) to have the “mixture”
definition (equation 12). The label of example x is set to ŷ if any feature of x belongs to
St+1. In particular, all previously labeled examples continue to be labeled (though their
labels may change), and any unlabeled examples possessing feature ft become labeled.

The algorithm is summarized in table 10. It is actually an algorithm schema; the
definition for “update” needs to be supplied. We consider three different update functions:
one that uses raw precision as prediction distribution, one that uses smoothed precision,
and one that goes in the opposite direction, using what we might call “peaked precision”.
As we have seen, smoothed precision can be expressed as a mixture of raw precision and
the uniform (i.e., maximum-entropy) distribution (22). Peaked precision q̂(f) mixes in a
certain amount of the point (i.e., minimum-entropy) distribution that has all its mass on
the label that maximizes raw precision:

q̂f (j) ≡ p(Λ(t)|f)qf (j) + p(V(t)|f)[[j = j†]] (25)

where:
j† ≡ arg max

j
qf (j) (26)

21

Abney Yarowsky Algorithm

Note that peaked precision involves a variable amount of “peaking”; the mixing param-
eters depend on the relative proportions of labeled and unlabeled examples. Note also
that j† is a function of f , though we do not explicitly represent that dependence.

The three instantiations of algorithm YS that we consider are:

YS-P (“peaked”) θfj = q̂f (j)
YS-R (“raw”) θfj = qf (j)
YS-FS (“fixed smoothing”) θfj = q̃f (j)

We will show that the first two algorithms reduce K in each iteration. We will show
that the third algorithm, YS-FS, reduces K in iterations in which ft is a new feature,
not previously selected. Unfortunately, we are unable to show that YS-FS reduces K
when ft is a previously-selected feature. This suggests using a mixed algorithm in which
smoothed precision is used for new features but raw or peaked precision is used for
previously-selected features.

A final issue with the algorithm schema YS concerns the selection of features in step
(2.1). The schema as stated does not specify which feature is to be selected. In essence,
the manner in which rules are selected does not matter, as long as one selects rules
that have room for improvement, in the sense that the current prediction distribution
θf differs from raw precision qf . (The justification for this choice is given in theorem 9
below.) The theorems of the following sections show that K decreases in each iteration,
so long as any such rule can be found.

One could choose greedily by choosing the feature that maximizes gain G (eq. 27),
though in the next section we give lower bounds for G that are rather more easily
computed (theorems 6 and 7).

4.2 Gain
From this point on, we consider a single iteration of the YS algorithm, and discard the
variable t. We write θold and φold for the parameter-set and labeling at the beginning of
the iteration, and we write simply θ and φ for the new parameter-set and new labeling.
The set Λ (resp., V) represents the examples that are labeled (resp., unlabeled) at the
beginning of the iteration. The selected feature is f .

We wish to choose a prediction distribution for f so as to guarantee that K decreases
in each iteration. The gain in the current iteration is:

G =
∑
x∈X

∑
g∈Fx

[
H(φold

x ||θoldg)−H(φx||θg)
]

(27)

Gain is the negative change in K; it is positive when K decreases.
In considering the reduction in K from (φold, θold) to (φ, θ), it will be convenient to

consider the following intermediate values.

K0 =
∑
x∈X

∑
g∈Fx

H(φold
x ||θoldg)

K1 =
∑
x∈X

∑
g∈Fx

H(ψx||θoldg)

K2 =
∑
x∈X

∑
g∈Fx

H(ψx||θg)

K3 =
∑
x∈X

∑
g∈Fx

H(φx||θg)

22

Abney Yarowsky Algorithm

where

ψxj =
{

[[j = j∗]] if x ∈ Vf

φold
xj otherwise

and
j∗ ≡ arg max

j
θfj (28)

One should note that:

• θf is the new prediction distribution for the candidate f ; θgj = θoldgj for g 6= f .

• φ is the new label distribution, after relabeling. It is defined as:

φxj =
{

[[j = ŷ(x)]] if x ∈ Λ ∪Xf
1
L otherwise (29)

• For x ∈ Vf , the only selected feature at t+ 1 is f , hence j∗ = ŷ for such
examples. It follows that ψ and φ agree on examples in Vf . They also agree on
examples that are unlabeled at t+ 1, assigning them the uniform label
distribution. If ψ and φ differ, it is only on old labeled examples (Λ) that need
to be relabeled, given the addition of f .

The gain G can be represented as the sum of three intermediate gains, corresponding
to the intermediate values just defined:

G = GV +Gθ +GΛ (30)

where:

GV = K0 −K1

Gθ = K1 −K2

GΛ = K2 −K3

The gain GV intuitively represents the gain that is attributable to labeling previously
unlabeled examples in accordance with the predictions of θ. The gain Gθ represents the
gain that is attributable to changing the values θfj where f is the selected feature. The
gain GΛ represents the gain that is attributable to changing the labels of previously
labeled examples to make labels agree with the predictions of the new model θ. The gain
Gθ corresponds to step 2.3 of algorithm YS, in which θ is changed but φ is held constant;
and the combined GV and GΛ gains correspond to step 2.4 of algorithm YS, in which φ
is changed while holding θ constant.

In the remainder of this section, we derive two lower bounds for G. In following
sections, we show that the updates YS-P, YS-R, and YS-FS guarantee that the lower
bounds given below are non-negative, hence that G is non-negative.

Lemma 3
GV = 0

Proof. We show that K remains unchanged if we substitute ψ for φold in K0. The only
property of ψ that we need is that it agrees with φold on previously labeled examples.

Since ψx = φold
x for x ∈ Λ, we need only consider examples in V. Since these examples

are unlabeled at the beginning of the iteration, none of their features have been selected,

23

Abney Yarowsky Algorithm

hence θoldgj = 1/L for all their features g. Hence:

K1 = −
∑
x∈V

∑
g∈Fx

∑
j

ψxj log θoldgj

= −
∑
x∈V

∑
g∈Fx

∑
j

ψxj

 log
1
L

= −
∑
x∈V

∑
g∈Fx

∑
j

φold
xj

 log
1
L

= −
∑
x∈V

∑
g∈Fx

∑
j

φold
xj log θoldgj = K0

(Note that ψxj is not in general equal to φold
xj , but

∑
j ψxj and

∑
j φ

old
xj both equal 1.)

This shows that K0 = K1, hence that GV = 0. 2

Lemma 4
GΛ ≥ 0

We must show that relabeling old labeled examples – that is, setting φx(j) = [[j = ŷ]] for
x ∈ Λ – does not increase K. The proof has the same structure as the proof of theorem
1, and is omitted.

Lemma 5
Gθ is equal to

|Λf |
[
H(qf ||θoldf)−H(qf ||θf)

]
+ |Vf |

[
logL− log

1
θfj∗

]
(31)

Proof. By definition, Gθ = K1 −K2, and K1 and K2 are identical everywhere except on
examples in Xf . Hence:

Gθ =
∑

x∈Xf

∑
g∈Fx

[
H(ψx||θoldg)−H(ψx||θg)

]
We divide this sum into three partial sums:

Gθ = A+B + C (32)

A =
∑

x∈Λf

[
H(ψx||θoldf)−H(ψx||θf)

]
B =

∑
x∈Vf

[
H(ψx||θoldf)−H(ψx||θf)

]
C =

∑
x∈Xf

∑
g 6=f∈Fx

[
H(ψx||θoldg)−H(ψx||θg)

]
We consider each partial sum separately.

A =
∑

x∈Λf

[
H(ψx||θoldf)−H(ψx||θf)

]

24

Abney Yarowsky Algorithm

= −
∑

x∈Λf

∑
k

ψxk

[
log θoldfk − log θfk

]
= −

∑
x∈Λf

∑
k

[[x ∈ Λk]]
[
log θoldfk − log θfk

]
= −

∑
k

|Λfk|
[
log θoldfk − log θfk

]
= −|Λf |

∑
k

qf (k)
[
log θoldfk − log θfk

]
= |Λf |

[
H(qf ||θoldf)−H(qf ||θf)

]
(33)

B =
∑

x∈Vf

[
H(ψx||θoldf)−H(ψx||θf)

]
= −

∑
x∈Vf

∑
k

ψxk

[
log θoldfk − log θfk

]
= −

∑
x∈Vf

∑
k

[[k = j∗]]
[
log θoldfk − log θfk

]
= |Vf |

[
log

1
θoldfj∗

− log
1
θfj∗

]

= |Vf |
[
logL− log

1
θfj∗

]
(34)

The justification for the last step is a bit subtle. If f is a new feature, not previously
selected, then θoldfk = 1/L for all k, and the substitution is valid. On the other hand, if f
is a previously selected feature, then |Vf | = 0, and even though the substitution of 1/L
for θoldfj∗ may not be valid, it is innocuous.

C =
∑

x∈Xf

∑
g 6=f∈Fx

[
H(ψx||θoldg)−H(ψx||θg)

]
=

∑
x∈Xf

∑
g 6=f∈Fx

[
H(ψx||θoldg)−H(ψx||θoldg)

]
= 0 (35)

Combining (32), (33), (34) and (35) yields the lemma. 2

Theorem 6
G is bounded below by (31).

Proof. Combining (30) with lemmas 3, 4, and 5. 2

Theorem 7
G is bounded below by

|Λf |
[
H(qf ||θoldf)−H(qf ||θf)

]
Proof. The theorem follows immediately from theorem 6 if we can show that

logL− log
1
θfj∗

≥ 0

25

Abney Yarowsky Algorithm

Observe first that logL = H(u). (Recall that u(j) = 1/L is the uniform distribution over
labels.) By lemma 1, we know that

H(u)− log
1
θfj∗

≥ H(u)−H(θf)

≥ 0

The latter following because the uniform distribution maximizes entropy. 2

Theorem 8
G is bounded below by

|Λf |
[
D(qf ||θoldf)−D(qf ||θf)

]
Proof. Immediate from theorem 7 and the fact that:

H(qf ||θoldf)−H(qf ||θf) = H(qf) +D(qf ||θoldf)−H(qf)−D(qf ||θf)

= D(qf ||θoldf)−D(qf ||θf)

2

Theorem 9
If θoldf 6= qf , then there is a choice of θf that yields strictly positive gain.

Proof. If θoldf 6= qf , then
D(qf ||θoldf) > 0

Setting θf = qf has the result that

|Λf |
[
D(qf ||θoldf)−D(qf ||θf)

]
= |Λf |D(qf ||θoldf) > 0

Hence G > 0 by theorem 8. 2

4.3 Algorithm YS-P
We now use the results of the previous section to show that the algorithm YS-P is correct
in the sense that it reduces K in every iteration.

Theorem 10
In each iteration of algorithm YS-P, K decreases.

Proof. We wish to show that G > 0. By theorem 6, that is true if the expression (31)
is positive. By theorem 9, there exist choices for θf that make (31) positive, hence in
particular we guarantee G > 0 by maximizing (31). We maximize (31) by minimizing:

|Λf |H(qf ||θf) + |Vf | log
1
θfj∗

(36)

Since
H(qf ||θf) = H(qf) +D(qf ||θf)

we minimize (36) by minimizing:

|Λf |D(qf ||θf) + |Vf | log
1
θfj∗

(37)

26

Abney Yarowsky Algorithm

Both terms are nonnegative. The first term is 0 if θf = qf . The second term is 0 for
any distribution that concentrates all its mass in a single label j∗; it is symmetric in all
choices of j∗, and decreases monotonically as θfj∗ approaches 1. Hence, the minimum of
(37) will have j∗ equal to the mode of qf , though it may be more peaked than qf , at the
cost of an increase in the first term, but offset by a decrease in the second term.

Recall that j† = arg maxj qf (j). By the reasoning of the previous paragraph, we
know that j† = j∗ at the minimum of (37). Hence we can minimize (37) by minimizing:

|Λf |D(qf ||θf)− |Vf |
∑

k

[[k = j†]] log θfk (38)

We compute the gradient:

∂

∂θfj

[
|Λf |D(qf ||θf)− |Vf |

∑
k

[[k = j†]] log θfk

]

=
∂

∂θfj

[
|Λf |H(qf ||θf)− |Λf |H(qf)− |Vf |

∑
k

[[k = j†]] log θfk

]

=
∂

∂θfj
|Λf |H(qf ||θf)− ∂

∂θfj
|Vf |

∑
k

[[k = j†]] log θfk

= −|Λf |
∂

∂θfj

∑
k

qf (k) log θfk − |Vf |
∂

∂θfj

∑
k

[[k = j†]] log θfk

= −|Λf |
∂

∂θfj
qf (j) log θfj − |Vf |

∂

∂θfj
[[j = j†]] log θfj

= −|Λf |qf (j)
1
θfj

− |Vf |[[j = j†]] 1
θfj

(39)

As before, the derivative of the constraint Cf = 0 is 1, and we minimize (38) under the
constraint by solving:

−|Λf |qf (j)
1
θfj

− |Vf |[[j = j†]] 1
θfj

= λ

θfj = (−|Λf |qf (j)− |Vf |[[j = j†]]) /λ (40)

Substituting into the constraint:∑
j

(−|Λf |qf (j)− |Vf |[[j = j†]]) /λ = 1

−|Λf | − |Vf | = λ

−|Xf | = λ

Substituting this back into (40):

θfj = p(Λ|f)qf (j) + p(V|f)[[j = j†]] (41)

That is, the maximizing solution is peaked precision, which is the update rule for YS-P.
2

27

Abney Yarowsky Algorithm

4.4 Algorithm YS-R
We now show that YS-R also decreases K in each iteration. In fact, it has essentially
already been proven.

Theorem 11
Algorithm YS-R decreases K in each iteration.

Proof. In the proof of theorem 9, we showed that the choice

θf = qf

yields strictly positive gain. This is the update rule used by YS-R. 2

4.5 Algorithm YS-FS
The original Yarowsky algorithm YS-0/DL-0 used smoothed precision with fixed ε as
update rule. We have been unsuccessful at justifying this choice of update rule in general.
However, we are able at least to show that it does decrease K when the selected feature
is a new feature, not previously selected.

Theorem 12
Algorithm YS-FS has positive gain in each iteration in which the selected feature has
not been previously selected.

Proof. By theorem 7, gain is positive if

H(qf ||θoldf) > H(qf ||θf) (42)

By the assumption that the selected feature f has not been previously selected, θoldf is
the uniform distribution u, and the left-hand side of (42) is equal to H(qf ||u). It is easy
to verify that H(p||u) = H(u) for any distribution p, hence the left-hand side of (42) is
equal to H(u). Further, YS-FS uses smoothed precision as update rule, θf = q̃f , so (42)
can be rewritten as:

H(u) > H(qf ||q̃f)

This condition does not hold trivially, inasmuch as cross entropy, like divergence, is
unbounded. But we can show that it holds in this particular case.

We derive an upper bound for H(qf ||q̃f).

H(qf ||q̃f) = −
∑

j

qf (j) log q̃f (j)

= −
∑

j

qf (j) log
[

1
1 + Lε

qf (j) +
Lε

1 + Lε
u(j)

]

≤ −
∑

j

qf (j)
[

1
1 + Lε

log qf (j) +
Lε

1 + Lε
log u(j)

]
=

1
1 + Lε

H(qf) +
Lε

1 + Lε
H(qf ||u)

=
1

1 + Lε
H(qf) +

Lε

1 + Lε
H(u) (43)

Observe that:
H(u) >

1
1 + Lε

H(qf) +
Lε

1 + Lε
H(u) (44)

28

Abney Yarowsky Algorithm

iff [
1− Lε

1 + Lε

]
H(u) >

1
1 + Lε

H(qf)

iff
H(u) > H(qf)

We know that H(u) ≥ H(qf) because the uniform distribution maximizes entropy. We
know that the inequality is strict by the following reasoning. Since f is a new feature,
θoldf = u. Because of the restriction on step (2.1) in algorithm YS, θoldf 6= qf , hence
qf 6= u, and H(u) is strictly greater than H(qf).

Hence (44) is true, and combining (44) with (43), we have shown (42) to be true,
proving the theorem. 2

5. Minimization of Feature Entropy

At the beginning of the paper, the co-training algorithm was mentioned as an alternative
to the Yarowsky algorithm. There is in fact a connection between co-training and the
Yarowsky algorithm. In the original co-training paper (Blum and Mitchell, 1998) it was
suggested that the algorithm be understood as seeking to maximize agreement on unla-
beled data between classifiers trained on two different “views” of the data. Subsequent
work (Dasgupta, Littman, and McAllester, 2001) has proven a direct connection between
classifier error and such cross-view agreement on unlabeled data.

In the current context, there is also justification for pursuing agreement on unlabeled
data. However, the Yarowsky algorithm makes no assumption of the existence of two
conditionally-independent views of the data. Rather, there is a motivation for seeking
agreement on unlabeled data between arbitrary pairs of features.

Recall that our original objective function, H, can be expressed as the sum of an
entropy term and a divergence term:

H =
∑
x∈X

[H(φx) +D(φx||πx)]

As D(φx||πx) becomes small and H(πx) becomes small, H(φx) necessarily also becomes
small; hence we can limit H by limiting H(πx) and D(φx||πx). Intuitively, we wish to
reduce the uncertainty of the model’s predictions, while also improving the fit between
the model’s predictions and the known labels.

Let us focus now on the uncertainty of the model’s predictions.

H(πx) = −
∑

j

πx(j) log πx(j)

= −
∑

j

πx(j) log

∑
g∈Fx

1
m
θgj


≤ −

∑
j

πx(j)
∑
g∈Fx

1
m

log θgj

= −
∑

j

∑
f∈Fx

1
m
θfj

 ∑
g∈Fx

1
m

log θgj

= − 1
m2

∑
f∈Fx

∑
g∈Fx

∑
j

θfj log θgj

29

Abney Yarowsky Algorithm

=
1
m2

∑
f∈Fx

∑
g∈Fx

H(θf ||θg)

=
1
m2

∑
f∈Fx

∑
g∈Fx

[H(θf) +D(θf ||θg)]

=
1
m

∑
f∈Fx

H(θf) +
1
m2

∑
f∈Fx

∑
g∈Fx

D(θf ||θg) (45)

In other words, by decreasing the uncertainty of the prediction distributions of individual
features, and simultaneously increasing the agreement among features (that is, decreasing
their pairwise divergence), we decrease an upper bound on H(πx). This motivates inter-
feature agreement without recourse to an assumption of independent views.

6. Conclusion

In this paper, we have presented a number of variants of the Yarowsky algorithm, and
we have shown that they optimize natural objective functions. We considered first the
modified generic Yarowsky algorithm Y-1 and showed that it minimizes the objective
function H (which is equivalent to maximizing likelihood), provided that its base learner
reduces H.

We then considered three families of specific Yarowsky-like algorithms. The Y-1/DL-
EM algorithms (Y-1/DL-EM-Λ and Y-1/DL-EM-X) minimize H, but have the disadvan-
tage that the DL-EM base learner has no similarity to Yarowsky’s original base learner. A
much better approximation to Yarowsky’s original base learner is provided by DL-1, and
the Y-1/DL-1 algorithms (Y-1/DL-1-R and Y-1/DL-1-VS) were shown to minimize the
objective function K, an upper bound for H. Finally, the YS algorithms (YS-P, YS-R,
and YS-FS) are sequential variants, reminiscent of the Yarowsky-Cautious algorithm of
Collins & Singer; we showed that they minimize K.

To the extent that these algorithms capture the essence of the original Yarowsky
algorithm, they provide a formal understanding of Yarowsky’s approach. Even if they
are deemed to diverge too much from the original to cast light on its workings, they
at least represent a new family of bootstrapping algorithms with solid mathematical
foundations.

References

Abney, Steven. 2002. Bootstrapping. In Proceedings of 40th Annual Meeting of the
Association for Computational Linguistics (ACL), pages 360–367.

Blum, A. and T. Mitchell. 1998. Combining labeled and unlabeled data with co-training. In
Proceedings of the 11th Annual Conference on Computational Learning Theory (COLT),
pages 92–100. Morgan Kaufmann Publishers.

Collins, Michael and Yoram Singer. 1999. Unsupervised models for named entity classification.
In Proceedings of Empirical Methods in Natural Language Processing (EMNLP), pages
100–110.

Dasgupta, Sanjoy, Michael Littman, and David McAllester. 2001. PAC generalization bounds
for co-training. In Advances in Neural Information Processing Systems 14 (NIPS).

Yarowsky, David. 1995. Unsupervised word sense disambiguation rivaling supervised methods.
In Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics,
pages 189–196.

30

